Nonlinear pressure depended frequency-body mass scaling rule for animal communication

Yang Shuai1, Zhang Yu1*,Wang Ruiqing2

Journal of Nanjing University(Natural Sciences) ›› 2015, Vol. 51 ›› Issue (7) : 112.

PDF(1016308 KB)
PDF(1016308 KB)
Journal of Nanjing University(Natural Sciences) ›› 2015, Vol. 51 ›› Issue (7) : 112.

Nonlinear pressure depended frequency-body mass scaling rule for animal communication

  • Yang Shuai1, Zhang Yu1*,Wang Ruiqing2
Author information +
History +

Abstract

Natural selection and evolution make different animals employ widely different frequencies for their sound communication, animals choose the optimal frequency according to their own conditions and the best sound propagation distance. In this paper, considering the nonlinear relationship between the frequency and subglottal pressure, adopting excised larynx experimental and passive biosonar theory to optimize the phonation frequency scaling rule. Both the linear fitting method and nonlinear fitting method, respectively, are used to fit the fundamental frequency under subglottal pressure P from 10 cmH2O to 31cmH2O (R2=0.98), and from 10cmH2O to 49cmH2O (R2=0.99). The optimal frequency is inversely proportional to 0.67 power of the animal’s body mass.

Cite this article

Download Citations
Yang Shuai1, Zhang Yu1*,Wang Ruiqing2. Nonlinear pressure depended frequency-body mass scaling rule for animal communication[J]. Journal of Nanjing University(Natural Sciences), 2015, 51(7): 112

References

[1] R. Haven Wiley, Douglas G. Richards. Physical Constraints on Acoustic Communication in the Atmosphere: Implications for the Evolution of Animal Vocalizations,Behavioral Ecology and Sociobiology,1978,3,69-94.

[2] Peter M. Narins, Walter Hödl, Daniela S. Grabul.Bimodal signal requisite for agonistic behavior in a dart-poison frog, Epipedobates femoralis,Proceedings of the National Academy of Sciences,2003,vol. 100,577-580.

[3] 魏翀,张宇,张赛,徐晓辉。网箱养殖大黄鱼合成声信号特性研究,声学学报,2013,vol. 38,300-305.

[4] J. W. Bradbury and S. L. Vehrenkamp, Principles of Animal Communication. Sinauer Sunderland, MA, 1998.

[5] Neville H. Fletcher.Acoustic Systems in Biology:from Insects to Elephants.Acoustics Australia,2005,vol 33,83-88.

[6] Titze I R. On the relation between subglottal pressure and fundamental frequency in phonation. Journal of the Acoustical Society of America, 1989, 85(2):901-906.

[7] Alipour F, Scherer R C.On pressure-frequency relations in the excised larynx. Journal of the Acoustical Society of America, 2007, 122(4):2296-2305.

[8] H. E. Bass, L. C. Sutherland, A. J. Zuckerwar, et al, Atmospheric absorption of sound: Recent developments. Journal of the Acoustical Society of America. 1995, 97, 680–683.

[9] L. C. Sutherland and G. A. Daigle, Atmospheric sound propagation, Encyclopedia of Acoustics, edited by M. J. Crocker . Wiley, New York,1997, 341–365.

[10] Jiang J J, Titze I R. A methodological study of hemilaryngeal phonation. Laryngoscope, 1993, 103:872-882.
PDF(1016308 KB)

1480

Accesses

0

Citation

Detail

Sections
Recommended

/