Analysis of deep sea acoustic propagation based on ray stability parameter

Lin Ju1*, Zhao yue1, Wang Huan1, Chen peng2

Journal of Nanjing University(Natural Sciences) ›› 2015, Vol. 51 ›› Issue (6) : 1223-1233.

PDF(2954873 KB)
PDF(2954873 KB)
Journal of Nanjing University(Natural Sciences) ›› 2015, Vol. 51 ›› Issue (6) : 1223-1233.

Analysis of deep sea acoustic propagation based on ray stability parameter

  • Lin Ju1*, Zhao yue1, Wang Huan1, Chen peng2

Author information +
History +

Abstract

 As a widespread meso-scale phenomena among deep-sea environment, meso-scale eddy greatly affect marine thermohaline structure, thereby modify underwater sound propagation characteristics,and until now it has not yet fully and clearly understand the relevant acoustic signal fluctuation and perturbation under such sophisticated marine enviornment, otherwise there are still many difficulty to monitor the variation of meso-scale eddy efficiently by applying acoustic method. In addition to some traditional ways such as acoustic transmitting time perturbation, now some researchers has focused on applying some acoustic variables, such as waveguide invariant, based on analyzing and describing sound propagation characteristics under meso-scale eddy environment. By considering the equivalent between ray theory and normal mode theory, deep-sea sound propagation characteristics is analyzed by applying ray stability parameter and waveguide invariant, considering the equivalent between period of horizontal interference of normal mode and ray horizontal span. The equivalent between ray stability parameter and scattering matrix of normal mode is also discussed. The temporal variation of ray stability parameter under cold eddy environment in the South China Sea is analyzed by applying acoustic propagation simulation data with data assimilation result of ocean model. When the cold eddy pass the acoustic section slowly, the according results show that the variability of ray stability parameter is more stable compared with those of waveguide invariants, when sound propagate in environment consisting of a range-independent background on which a weak range-dependent perturbation is superimposed. The variation of ray stability parameter present the temporal-spatial characteristics of marine environment more clearly, therefore there are great potentiality for applying ray stability parameter in the deep-sea acoustic monitoring.

Cite this article

Download Citations

Lin Ju1*, Zhao yue1, Wang Huan1, Chen peng2

.
Analysis of deep sea acoustic propagation based on ray stability parameter[J]. Journal of Nanjing University(Natural Sciences), 2015, 51(6): 1223-1233

References

[1] Stammer D. On eddy characteristics, eddy transports, and mean flow properties. Journal of Physical Oceanography, 1998, 28(4): 727-739.

[2] Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies. Progress in Oceanography,2011, 91(2): 167-216.

[3] Dong, C., McWilliams J, Liu Y, et al. 2014, Global Heat and Salt Transports by Eddy Movements. Nature Communications, 2013, 5: 3294 doi:10.1038/ncomms4294.

[4] Vastano A C, Owens G E. On the acoustic characteristics of a Gulf Stream cyclonic ring. Journal of Physical Oceanography, 1973, 3(4): 470-478.

[5] Henrick R F, Siegmann W L, Jacobson M J. General analysis of ocean eddy effects for sound transmission applications. Journal of the Acoustical Society of America, 1977, 62(4): 860-870.

[6] Baer R N. Calculations of sound propagation through an eddy. Journal of the Acoustical Society of America, 1980, 67(4): 1180-1185.

[7] Mellberg L E. Robinson A R, Botseas G, Azimuthal variation of low-frequency acoustic propagation through asymmetric Gulf Stream eddies. Journal of the Acoustical Society of America, 1991, 89(5): 2157-2167.

[8] 康颖. 海洋中尺度结构声传播特性分析. 硕士学位论文,青岛:中国海洋大学, 2004.

[9] 刘清宇. 海洋中尺度现象下的声传播研究.博士学位论文, 哈尔滨:哈尔滨工程大学, 2006.

[10] Kamel A B, Felsen L. On the ray equivalent of a group of modes. Journal of the Acoustical Society of America, 1982, 71(6): 1445-1452.

[11] Tindle C T, Guthrie K M. Rays as interfering modes in underwater acoustics. Journal of Sound and Vibration, 1974, 34(2): 291-295.

[12] Tindle C T, Bold G E J. Improved ray calculations in shallow water. Journal of the Acoustical Society of America, 1981, 70(3): 813-819.

[13] Tindle C T. Ray calculations with beam displacement. Journal of the Acoustical Society of America, 1983, 73(5): 1581-1586.

[14] 高天赋, 尚尔昌. 声场的简正波表示与广义射线表示之间的变换关系. 科学通报, 1980, 25(14 ): 671-671.

[15] Beron-Vera F J, Brown M G. Ray stability in weakly range-dependent sound channels. Journal of the Acoustical Society of America, 2003, 114(1): 123-130.

[16] Brown M G, Beron-Vera F J.,Rays, modes wave field structure and wave field stability. Journal of the Acoustical Society of America, 2005, 117(3): 1607-1610.

[17] Beron-Vera F J, Brown M G. Travel time stability in weakly range-dependent sound channels. Journal of the Acoustical Society of America, 2004, 115(3): 1068-1077.

[18] 陈鹏, 林巨. 射线稳定性参数与波导不变量. 中国海洋大学学报(自然科学版), 2015 (已接收)

[19] 刘伯盛, 雷家煜. 水声学原理. 哈尔滨:哈尔滨工程大学, 2010, 313.

[20] Brekhovskikh L M, Lysanov Y P. Fundamentals of Ocean Acoustics (3rd edition) , NewYork: Springer-Verlag, 2003, 280.

[21] Porter M B, Bucker H P. Gaussian beam tracing for computing ocean acoustic fields. Journal of the Acoustical Society of America, 1987, 82(4): 1349-1359.

[22] Porter M B. The KRAKEN normal mode program. Washington D C: Naval Research Laboratory, 1992.

PDF(2954873 KB)

1453

Accesses

0

Citation

Detail

Sections
Recommended

/