Estimating per-pixel snow cover fraction from MODIS in typical area of Bayanbulak

1,2,3, Feng Xuezhi1,2,3*, Xiao Pengfeng1,2,3, Ye Nan1,2,3

Journal of Nanjing University(Natural Sciences) ›› 2015, Vol. 51 ›› Issue (5) : 1022-1029.

PDF(4628411 KB)
PDF(4628411 KB)
Journal of Nanjing University(Natural Sciences) ›› 2015, Vol. 51 ›› Issue (5) : 1022-1029.

Estimating per-pixel snow cover fraction from MODIS in typical area of Bayanbulak

  • 1,2,3, Feng Xuezhi1,2,3*, Xiao Pengfeng1,2,3, Ye Nan1,2,3
Author information +
History +

Abstract

Snow cover information is important for climate change research, water resource utilization and snow disaster monitoring. Estimating sub-pixel snow cover fraction can reduce the error caused by the mixed information within a pixel, thus improve the accuracy of snow cover mapping. Compared with the MODIS (moderate-resolution imaging spectroradiometer) snow cover fraction (FRA) product, a per-pixel estimating model was developed and validated to achieve a more precise estimation in typical area of Bayanbulak, Xinjiang Province. Using HJ-1B 30-m observations as “ground truth”, the percentage of snow cover was calculated for 500-m cells. Then a regression relationship between 500-m normalized difference snow index (NDSI) observations and FRA was developed for each pixel. The results showed that compared with the MOD10A1 FRA product, the standard error and the mean absolute error of the propose model were reduced. But the per-pixel estimating model tended to overestimate FRA overall. The problem was resulted from solar radiation difference between sunny and shady slope, the fragmented snow in fringe area and the complications of snow in forested area. Overall, the per-pixel estimating model can estimate sub-pixel snow cover fraction more accurately, thus provides support for reasonable water resource utilization and snow disaster mitigation in pastoral areas

Cite this article

Download Citations
1,2,3, Feng Xuezhi1,2,3*, Xiao Pengfeng1,2,3, Ye Nan1,2,3. Estimating per-pixel snow cover fraction from MODIS in typical area of Bayanbulak[J]. Journal of Nanjing University(Natural Sciences), 2015, 51(5): 1022-1029

References

[1]., 程国栋. 冰冻圈与全球变化. 中国科学院院刊, 1991, (4): 287–291.
[2].Déry S J, Brown R D. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophysical Research Letters, 2007, 34(22): L22504.
[3].Rango A. Worldwide testing of the snowmelt runoff model with applications for predicting the effects of climate change. Nordic Hydrology, 1992, 23(3): 155–172.
[4].杨针娘, 刘新仁, 曾群柱等. 中国寒区水文. 北京: 科学出版社, 2000, 125–150.
[5].康尔泗, 程国栋, 董增川. 中国西北干旱区冰雪水资源和出山径流. 北京: 科学出版社, 2002, 55–72.
[6].李培基. 中国季节积雪资源的初步评价. 地理学报, 1988, 43(2): 108–119.
[7].曾群柱, 雍世鹏, 顾钟炜等. 中国雪灾的分类分级和危险度评价方法的研究.中国自然灾害影响评价方法研究. 北京: 中国科技出版社, 1993, 87–162.
[8].冯学智, 曾群柱, 陈贤章等. 西藏那曲雪灾的遥感监测研究. 中国科学院兰州冰川冻土研究所集刊(第8号). 北京: 科学出版社, 1995, 14–22.
[9].冯学智, 鲁安新. 中国主要牧区雪灾遥感监测评估模型研究. 遥感学报, 1997, 1(2): 129–134.
[10].冯学智, 陈贤章. 雪冰遥感20年的进展与成果. 冰川冻土, 1998, 20(3): 53–56.
[11].冯学智. 卫星雪盖制图及其应用研究概况. 遥感技术与应用, 1989, (1): 25–28.
[12].陈贤章. 从卫星遥感资料中提取雪盖信息的探讨. 环境遥感, 1988, 3(2): 108–115.
[13].车 涛, 李 新. 1993-2002年中国积雪水资源时空分布与变化特征. 冰川冻土, 2005, 27(01): 64–67.
[14].王 建. 卫星遥感雪盖制图方法对比与分析. 遥感技术与应用, 1999, 14(4): 29–36.
[15].Frei A, Tedesco M, Lee S, et al. A review of global satellite-derived snow products. Advances in Space Research, 2012, 50(8): 1007–1029.
[16].Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 1995, 54(2): 127–140.
[17].Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products. Remote Sensing of Environment, 2002, 83(1–2): 181–194.
[18].Hall D K, Riggs G A. Accuracy assessment of the MODIS snow products. Hydrological Processes, 2007, 21(12): 1534–1547.
[19].Salomonson V V, Appel I. Estimating the fractional snow covering using the normalized difference index. Remote Sensing of Environment, 2004, 89: 351–360.
[20].Salomonson V V, Appel I. Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1747–1756.
[21].Arsenault K R, Houser P R, Lannoy G J M De. Evaluation of the MODIS snow cover fraction product. Hydrological Processes, 2014, 28: 980–998.
[22].曹云刚, 刘 闯. 一种简化的MODIS亚像元积雪信息提取方法. 冰川冻土, 2006, 28(4): 562–567.
[23].周 强, 王世新, 周 艺等. MODIS亚像元积雪覆盖率提取方法. 中国科学院研究生院学报, 2009, 26(3): 383–388.
[24].张 颖, 黄晓东, 王 玮等. MODIS 逐日积雪覆盖率产品验证及算法重建. 干旱区研究, 2013, 30(5): 808–814.
[25].唐志光, 王 建, 彦立利等. 基于MODIS 的青藏高原亚像元积雪覆盖反演. 干旱区资源与环境, 2013, 27(11): 33–38.
[26].刘良明, 徐 琪, 胡 玥等. 利用非线性NDSI模型进行积雪覆盖率反演研究. 武汉大学学报信息科学版, 2012, 37(5): 534–536.
[27].胡汝骥. 中国天山自然地理. 北京: 中国环境科学出版社, 2004, 381–386.
[28].宋 珍, 陈晓玲, 刘 海等. 基于HJ-1A/1B卫星遥感数据的积雪识别方法研究. 长江流域资源与环境, 2011, 20(5): 553–558.
[29].殷 慧, 王思远, 孙云晓等. HJ-1B的积雪参数反演研究. 测绘通报, 2014, 5: 32–36.
[30].蒋友严, 杜文涛, 韩 涛等. 基于HJ-1B数据的积雪制图NDSI阈值分析—以祁连山积雪为例. 冰川冻土, 2013, 35(3): 648–655.
[31].Hall D K, Foster J L, Verbyla D L, et al. Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in central Alaska. Remote Sensing of Environment, 1998, 66(2): 129–137.
[32].孙志群, 刘志辉, 邱冬梅. 基于HJ-IB数据的雪盖提取方法研究—以军塘湖流域为例. 干旱区地理, 2012, 35(1): 125–132.
PDF(4628411 KB)

1761

Accesses

0

Citation

Detail

Sections
Recommended

/