[1] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6: 147~150.
[2] Coleman J N, Lotya M, ONeill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331: 568~571.
[3] Wang Q H, Zadeh K K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7: 699~712.
[4]
http://en.wikipedia.org/wiki/Molybdenum_disulfide.
[5] Kuc A, Zibouche N, Heine T. Influence of quantum con?nement on the electronic structure of the transition metal sufide TS2. Physical Review B, 2011, 83: 245213~245216.
[6] Zhu Z Y, Cheng Y C, Schwingenschlogl U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Physical Review B, 2011, 84: 153402~153406.
[7] Mak K F, He K, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 2012, 7: 494~498.
[8] Zeng H, Dai J, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 2012, 7: 490~493.
[9] Cao T, Wang G, Han W, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications, 2012, 3: 887~891.
[10] Wang X R, Shi Y, Zhang R. Field-effect transistors based on two-dimensional materials for logic applications. Chinese Physics B, 2013, 22: 098505~098519.
[11] Liu L, Lu Y, Guo J. On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Transactions on Electron Device, 2013, 60: 4133~4139.
[12] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 10451~10453.
[13] Qiu H, Pan L, Yao Z, et al. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Applied Physics Letters, 2012, 100: 123104~123106.
[14] Park W, Park J, Jang J, et al. Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology, 2013, 24: 095202~095206.
[15] Bao W, Cai X, Kim D, et al. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Applied Physics Letters, 2013, 102: 042104~042107.
[16] Das S, Chen H, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Letters, 2013, 13: 100~105.
[17] Kim S, Konar A, Hwang W, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nature Communications, 2012, 3: 1011-1017.
[18] Kaasbjerg K, Thygesen K S, Jacobsen K W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Physical Review B, 2012, 85: 115317~115332.
[19] Wang H, Yu L, Lee Y, et al. Integrated circuits based on bilayer MoS2 transistors. Nano Letters, 2012, 12: 4674~4680.
[20] Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano, 2011, 5: 7707~7712.
[21] Li S, Wakabayashi K, Xu Y, et al. Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Letters, 2013, 13: 3546~3552.
[22] Jin T, Kang J, Kim E S, et al. Suspended single-layer MoS2 devices. Journal of Applied Physics, 2013, 114: 164509~164512.
[23] Liu D, Guo Y, Fang L, et al. Sulfur vacancies in monolayer MoS2 and its electrical contacts. Applied Physics Letters, 2013, 103: 183113~183116.
[24] Zhou W, Zou X, Najmaei S, et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Letters, 2013, 13: 2615~2622.
[25] Ghatak S, Ghosh A. Observation of trap-assisted space charge limited conductivity in short channel MoS2 transistor. Applied Physics Letters, 2013, 103: 122103~122106.
[26] Qiu H, Xu T, Wang Z. Hopping transport through defect-induced localized states in molybdenum disulphide. Nature Communications, 2013, 4: 2642~2647.
[27] Ye J T, Zhang Y J, Akashi R, et al. Superconducting dome in a gate-tuned band insulator. Science, 2012, 338: 1193~1196.
[28] Cho J H, Lee J, He Y, et al. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Advanced Materials, 2008, 20: 686~690.
[29] Radisavljevic B, Kis A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nature Materials, 2013, 12: 815~820.
[30] Zhang Y J, Ye J T, Yomogida Y. Formation of a stable p?n junction in a liquid-gated MoS2 ambipolar transistor. Nano Letters, 2013, 13: 3023~3028.
[31] Sun Q Q, Li Y J, He J L, et al. The physics and backward diode behavior of heavily doped single layer MoS2 based pn junctions. Applied Physics Letters, 2013, 102: 093104~093106.
[32] Chen M, Nam H, Wi S, et al. Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Applied Physics Letters, 2013, 103: 142110~142113.
[33] Tan Z, Tian H, Feng T, et al. A small-signal generator based on a multi-layer graphene/molybdenum disulfide heterojunction. Applied Physics Letters, 2013, 103, 263506~263508.
[34] Radisavljevic B, Whitwick M B, Kis A. Small-signal amplifier based on single-layer MoS2. Applied Physics Letters, 2012, 101: 043103~043106.
[35] Yu W J, Li Z, Zhou H, et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nature Materials, 2013, 12: 246~252.
[36] Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6: 74~80.
[37] Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 2013, 8: 497~501.
[38] Yu W J, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotechnology, 2013, 8: 952~958.
[39] Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10: 1271~1275.
[40] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2. Nano Letters, 2011, 11: 5111~5116.
[41] Tongay S, Zhou J, Ataca C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Letters, 2013, 13: 2831~2836.
[42] Carladous A, Coratger R, Ajustron F, et al. Light emission from spectral analysis of Au/MoS2 nanocontacts stimulated by scanning tunneling microscopy. Physcial Review B, 2002, 66: 045401~045408.
[43] Sundaram R S, Engel M, Lombardo A, et al. Electroluminescence in single layer MoS2. Nano Letters, 2013, 13, 1416~1421.
[44] Hwang W S, Remskar M, Yan R, et al. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Applied Physics Letters, 2012, 101: 013107~013110.
[45] Podzorov V, Gershenson M E, Kloc Ch, et al. High-mobility field-effect transistors based on transition metal dichalcogenides. Applied Physics Letters, 2004, 84: 3301~3303.
[46] Kang J, Tongay S, Zhou J, et al. Band offsets and heterostructures of two-dimensional semiconductors. Applied Physics Letters, 2013, 102: 012111~012114.
[47] Das S, Appenzeller J. WSe2 field effect transistors with enhanced ambipolar characteristics. Applied Physics Letters, 2013, 103: 103501~103505.
[48] Huang J, Pu J, Hsu C, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano, 2014, 8: 923~930.
[49] Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 2011, 5: 9934~9938.
[50] Lopez N, Elias A L, Berkdemir A, et al. Photosensor device based on few-layered WS2 films. Advanced Functional Materials, 2013, 23: 5511~5517.
[51] Peimyoo N, Shang J, Cong C, et al. Nonblinking, intense two-dimensional light emitter: Monolayer WS2 triangles. ACS Nano, 2013, 7: 10985~10994.
[52] Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 2012, 11: 174~177.