High temperature superconducting Josephson terahertz radiation sources

 Wang Huabing

Journal of Nanjing University(Natural Sciences) ›› 2014, Vol. 50 ›› Issue (3) : 273.

PDF(2923398 KB)
PDF(2923398 KB)
Journal of Nanjing University(Natural Sciences) ›› 2014, Vol. 50 ›› Issue (3) : 273.

High temperature superconducting Josephson terahertz radiation sources

  •  Wang Huabing
Author information +
History +

Abstract

 After giving a brief review on the research background of Josephson THz sources and intrinsic Josephson junctions, we report in details on the THz emitters made of intrinsic Josephson junctions, including fabrication, mechanism, self-heating, frequency tunability, and some other respects. The state-of-art THz emitters, with the operation frequency of over 1 THz and the tunability of over 500 GHz, will find themselves many applications in space communication, spectroscopic imaging, and environment monitoring.

Cite this article

Download Citations
 Wang Huabing. High temperature superconducting Josephson terahertz radiation sources[J]. Journal of Nanjing University(Natural Sciences), 2014, 50(3): 273

References

 Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1:26.
[2] Josephson B D. Possible new effects in superconductive tunneling. Physics Letters, 1962, 1: 251.
[3] Wan K, Jain A K, Lukens J E. Submillimeter wave generation using Josephson junction arrays. Applied Physics Letters, 1989, 54(18):1805~1807.
[4] Benz S P, Burroughs C J. Coherent emission from two-dimensional Josephson junction arrays. Applied Physics Letters, 1991, 58(19):2162~2164.
[5] Booi P A A, Benz S P. Emission linewidth measurements of 2-dimensional array Josephson oscillators. Applied Physics Letters, 1994, 64(16):2163~2165.
[6] Han S, Bi B, Zhang W, et al. Demonstration of Josephson effect submillimeter wave sources with increased power. Applied Physics Letters, 1994, 64(11):1424~1426.
[7] Cawthorne A B, Barbara P, Lobb C J. High-frequency properties of two-dimensional Josephson junction arrays. IEEE Transactions on Applied Superconductivity, 1997, 7(2):3403~3406.
[8] Tilley D R. Superradiance in arrays of superconducting weak links. Physics Letters, 1970: 33A.
[9] Benz S P, Burroughs C J. Coherent emission from 2-dimensional Josephson junction arrays. Applied Physics Letters, 1991, 58(19):2162~2164.
[10] Barbara P, Cawthorne A B, Shitov S V, et al. Stimulated emission and amplification in Josephson junction arrays. Physical Review Letters, 1999, 82(9):1963~1966.
[11] Kleiner R, Steinmeyer F, Kunkel G, et al. Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Physical Review Letters, 1992, 68:2394~2394.
[12] Wang H B, You L X, Wu P H, et al. Microwave responses of an insular intrinsic Josephson junction stack fabricated from Bi-Sr-Ca-Cu-O single crystal. IEEE Transactions Applied Superconductivity, 2001, 11:1199~1199.
[13] Wang H B, Wu P H, Yamashita T. Stacks of intrinsic Josephson junctions singled out from inside Bi2Sr2CaCu2O8+x single crystals. Applied Physics Letters, 2001, 78(25):4010~4012.
[14] An D Y, Yuan J, Kinev N, et al. Terahertz emission and detection both based on high-T-c superconductors: Towards an integrated receiver. Applied Physics Letters, 2013. 102(9).
[15] Kleiner R. Two~dimensional resonant modes in stacked Josephson junctions. Physics Review B, 1994, 50:6919~6919.
[16] Hechtfischer G, Kleiner R, Schlenga K, et al. Collective motion of Josephson vortices in intrinsic Josephson junctions in Bi2Sr2CaCu2O8+y. Physics Review B, 1997, 55:14638~14638.
[17] Hechtfischer G, Kleiner R, Ustinov A V, et al. Non-Josephson emission from intrinsic junctions in Bi2Sr2CaCu2O8+y: Cherenkov radiation by Josephson vortices. Physical Review Letters, 1997, 79:1365~1365.
[18] Ustinov A V, Sakai S. Submillimeter-band high-power generation using multilayered Josephson junctions. Applied Physics Letters, 1998. 73:686~686.
[19] Wang H B, Aruga Y, Tachiki T, et al. Harmonic frequency mixing in Bi2Sr2CaCu2O8+x intrinsic Josephson junctions. Applied Physics Letters, 1999, 75(15):2310~2312.
[20] Wang H B, Aruga Y, Tachiki T, et al. Microwave-induced current steps in intrinsic Josephson junctions patterned on Bi2Sr2CaCu2O8+y single crystal. Applied Physics Letters, 1999, 74(24): 3693~3695.
[21] Kleiner R, Gaber T, Hechtfischer G. Stacked long Josephson junctions in zero magnetic field: A numerical study of coupled one-dimensional sine-Gordon equations. Physical Review B, 2000, 62: 4086~4086.
[22] Machida M, Koyama T, Tanaka A, et al. Collective dynamics of Josephson vortices in intrinsic Josephson junctions: Exploration of in-phase locked superradiant vortex flow states. Physica C-Superconductivity and Its Applications, 2000, 330: 85~85.
[23] Wang H B, Aruga Y, Chen J, et al. Individual Shapiro steps observed in resistively shunted intrinsic Josephson junctions on Bi2Sr2CaCu2O8+x single crystals. Applied Physics Letters, 2000, 77: 1017~1017.
[24] Kleiner R, Gaber T, Hechtfischer G. Stacked long Josephson junctions in external magnetic fields - a numerical study of coupled one-dimensional sine-Gordon equations. Physica C-Superconductivity and Its Applications, 2001, 362:29~29.
[25] Batov I, Jin X, Shitov S, et al. Detection of 0.5 THz radiation from intrinsic Bi2Sr2CaCu2O8 Josephson junctions. Applied Physics Letters, 2006, 88:262506~262506.
[26] Wang H B, Wu P H, Yamashita T. Terahertz responses of intrinsic Josephson junctions in high T-C superconductors. Physical Review Letters, 2001, 87(10):art. no.~107002.
[27] Wang H B, Urayama S, Kim S M, et al. Terahertz oscillation in submicron sized intrinsic Josephson junctions. Applied Physics Letters, 2006, 89:252506.
[28] Ozyuzer L, Koshelev A E, Kurter C, et al. Emission of coherent THz radiation from superconductors. Science, 2007, 318(5854):1291~1293.
[29] Wang H B, Guenon S, Yuan J, et al. Hot spots and waves in Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks: A study by low temperature scanning laser microscopy. Physical Review Letters, 2009, 102(1).
[30] Guénon S, Grünzweig M, Gross B, et al. Interaction of hot spots and THz waves in Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks of various geometry. Physical Review B, 2010, 82: 214506 ~ 214506.
[31] Wang H B, Guenon S, Gross B, et al. Coherent terahertz emission of intrinsic Josephson junction stacks in the hot spot regime. Physical Review Letters, 2010, 105(6).
[32] Gross B, Guénon S, Yuan J, et al. Hot-spot formation in stacks of intrinsic Josephson junctions in Bi2Sr2CaCu2O8. Physical Review B, 2012, 86:094524.
[33] Gross B, Yuan J, An D Y, et al. Modeling the linewidth dependence of coherent terahertz emission from intrinsic Josephson junction stacks in the hot~spot regime. Physical Review B, 2013, 88(1).
[34] Li M Y, Yuan J, Kinev N, et al. Linewidth dependence of coherent terahertz emission from Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks in the hot-spot regime. Physical Review B, 2012, 86(6).
PDF(2923398 KB)

1939

Accesses

0

Citation

Detail

Sections
Recommended

/