The characteristics of electromagnetic waves manipulation on metamaterial

Jin Biaobing, Feng Yijun, Wu Ruixin

Journal of Nanjing University(Natural Sciences) ›› 2014, Vol. 50 ›› Issue (3) : 235.

PDF(9148616 KB)
PDF(9148616 KB)
Journal of Nanjing University(Natural Sciences) ›› 2014, Vol. 50 ›› Issue (3) : 235.

The characteristics of electromagnetic waves manipulation on metamaterial

  • Jin Biaobing, Feng Yijun, Wu Ruixin
Author information +
History +

Abstract

Metamaterial which usually possesses material constitutive parameters not obtained with natural material becomes a hot research topic recently. Its designabilty and flexible tunability of the electromagnetic (EM) properties can be utilized to manipulate EM wave propagation. In this paper, we propose a variety of functional materials and devices that could manipulate the EM waves through metamaterials, including device that enables asymmetric EM wave propagation, tunable EM wave absorber, EM wave polarization modulator, magnetic photonic crystal, magnetic left-handed materials as well as the terahertz metamaterials based on superconductor thin films. Due to their specific and designable characteristics, these devices could have novel functionality and superior performances, enhancing the ability of EM wave manipulation.

Cite this article

Download Citations
Jin Biaobing, Feng Yijun, Wu Ruixin. The characteristics of electromagnetic waves manipulation on metamaterial[J]. Journal of Nanjing University(Natural Sciences), 2014, 50(3): 235

References

[1] Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996,76: 4773~4776.
[2] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47: 2075~2084.
[3] Veselago V G. The electrodynamics of substances with simultaneously negative values of ? and ?. Soviet Physics Uspekhi, 1968,10:509~514.
[4] Weiglhofer W S, Lakhtakia A. Introduction to complex mediums for electromagnetics and optics. Bellingham, WA, USA: SPIE Press, 2003, 757.
[5] Fedotov V A, Mladyonov P L, Prosvirnin S L, et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Physical Review Letters, 2006, 97: 167401.
[6] Plum E, Fedotov V A, Zheludev N I. Planar metamaterial with transmission and reflection that depend on the direction of incidence. Applied Physics Letters, 2009, 94: 131901.
[7] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber. Physical Review Letters, 2008, 100: 207402.
[8] Huang C, Feng Y H, Zhao J M, et al. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Physical Review B, 2012, 85: 195131.
[9] Zhu B, Wang Z, Huang C, et al. Polarization intsensitive metamaterial absorber with wide incident angle. Progress in Electromagnetics Research, 2010, 101: 231~239.
[10] Zhu B, Feng Y J, Zhao J M, et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Applied Physics Letters, 2010, 97: 051906.
[11] Zhu B, Feng Y J, Zhao J M, et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. Optical Express, 2010, 18: 23196~23203.
[12] Liu S Y, Du J J, Lin Z F, et al. Formation of robust and completely tunable resonant. Physical Review B, 2008, 78: 155101.
[13] Haldane F D M, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Physical Review Letters, 2008, 100: 013904.
[14] Raghu S, Haldane F D M. Analogs of quantum-Hall-effect edge states in photonic crystals. Physical Review A ,2008, 78: 033834.
[15] Wang Z, Chong Y D, Joannopoulos J D, et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Physical Review Letters, 2008, 100: 013905.
[16] Ochiai T, Onoda M. Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Physical Review B, 2009, 80:155103.
[17] Wang Z, Chong Y D, Joannopoulos1 J D, et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 2009, 461: 772-U20.
[18] Ao X Y, Lin Z F, Chan C T. One-way edge mode in a magneto-optical honeycomb photonic crystal. Physical Review B,2009, 80:033105.
[19] Poo Y, Wu R X, Lin Z F, et al. Experimental realization of self-guiding unidirectional electromagnetic edge states. Physical Review Letters, 2011, 106: 093903.
[20] He C, Chen X L, Lu M H, et al. Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal. Journal of Applied Physics, 2010, 107: 123117.
[21] Yang Y, Poo Y, Wu R X, et al. Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals. Applied Physics Letters, 2013, 102(23): 231113.
[22] Yu Z F, Veronis G, Wang Z, et al. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Physical Review Letters, 2008, 100:023902.
[23] Atsushi I, Zhang S, Genov D A, et al. Deep subwavelength terahertz waveguides using gap magnetic plasmon. Physical Review Letters, 2009, 102: 043904.
[24] Liu S Y, Lu W L, Lin Z F, et al. Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials. Applied Physics Letters, 2010, 97:201113.
[25] Liu S Y, Lu W L, Lin Z F, et al. Molding reflection from metamaterials based on magnetic surface plasmons. Physical Review B, 2011, 84: 045425.
[26] Poo Y, Wu R X, Liu S Y, et al. Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance. Applied Physics Letters, 2012, 101: 081912.
[27] Lian J, Fu J X, Gan L, et al. Robust and disorder-immune magnetically tunable one-way waveguides in a gyromagnetic photonic crystal. Physical Review B, 2012, 85: 125108.
[28] Qiu W J, Wang Z, and Solja?i? M. Broadband circulators based on directionalcoupling of one-way waveguides. Optics Express, 2011, 19(22): 22248.
[29] Huang C, Jiang C. Nonreciprocal photonic crystal delay waveguide. Journal of the Optical Society of America B, 2009, 26: 1954.
[30] He C, Zhang X L, Feng L, et al. One-way cloak based on nonreciprocal photonic crystal. Applied Physics Letters. 2011, 99: 151112.
[31] Yablonovitch E. Photonics one-way road for light. Nature, 2009, 461:744.
[32] Wu R X, Zhang X K, Lin Z F, et al. Possible existence of left-handed materials in metallic magnetic thin films. Journal of Magnetism and Magnetic Materials, 2004, 271: 180.
[33] Dewar G A. Thin wire array and magnetic host structure with n<0. Journal of Applied Physics, 2005, 97: 10Q101.
[34] Wu R X. Effective negative refraction index in periodic metal-ferrite –metal film composite. Journal of Applied Physics, 2005, 97: 670105.
[35] Wu R X, Zhao T, Chen P, et al. Periodic layered waveguide with negative index of refraction. Applied Physics Letters.2007, 90: 082506.
[36] Wu R X, Zhao T E, Xiao J Q. Periodic ferrite–semiconductor layered composite with negative index of refraction. Journal of Physics: Condensed Matter, 2007, 19: 026211.
[37] Wu R X, Ji X Y. Wave polarization and left-handed materials in metallic magnetic composites. Applied Physics A, 2007, 87: 205~208.
[38] Zou D Y, Jiang A M, Wu R X. Ferromagnetic metamaterial with tunable negative index of refraction. Journal of Applied Physics, 2010, 107: 013507.
[39] He G H, Wu R X, Poo Y, et al. Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh. Journal of Applied Physics, 2010, 107: 093522.
[40] Wu R X, Zou D Y. Phase diagram of lossy negative index metamaterials. Applied Physics Letters, 2008, 93: 101106.
[41] Rachford F, Armstead D, Harris V, et al. Simulations of ferrite-dielectric-wire composite negative index materials. Physical Review Letters, 2007, 99: 057202.
[42] Zhao H, Zhou J, Kang L, et al. Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires. Optical Express, 2009, 17: 13373~13380.
[43] Bi K, Zhou J, Zhao H, et al. Tunable dual-band negative refractive index in ferrite-based metamaterials. Optical Express, 2013, 21: 10746.
[44] Poo Y, Wu R X, He G H, et al. Experimental verification of a tunable left-handed material by bias magnetic fields. Applied Physics Letters, 2010, 96: 161902.
[45] Liu S, Chen W, Du J, et al. Manipulating negative-refractive behavior with a magnetic field. Physical Review Letters, 2008, 101: 157407.
[46] Gu Y, Wu R X, Yang Y, et al. Self-biased magnetic left-handed material. Applied Physics Letters, 2013, 102(23): 231914.
[47] Ziolkowski R W, Kipple A D. Application of double negativematerials to increase the power radiated by electrically small antennas. IEEE Transactions on Antennas Propagation, 2003, 51: 2626~2640.
[48] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterialfor directive emission. Physical Review Letters, 2002, 89: 213902.
[49] Wu R X, Zhu J, Tan L R, et al. Lower RCS directional antenna by left-handed material. Applied Physics A - Materials Science & Processing, 2012, 109:955~959.
[50] Khazan W M, Rieck C T, Kuzel P, et al. Terahertz surface resistance of high temperature superconducting thin films. Jounal of Applied Physics, 2000, 87:2984~2988.
[51] Ricci M, Orloff N, Anlage S M. Superconducting metamaterials. Applied Physics Letters, 2005, 87: 034102.
[52] Singh R, Tian Z, Han J, et al. Cryogenic temperatures as a path toward high-Q terahertz metamaterials. Applied Physics Letters, 2010, 96: 071114.
[53] Gu J, Singh R, Tian Z, et al.Superconductor terahertz metamaterial. Applied Physics Letters, 2010, 97: 071102.
[54] Jin B B, Zhang C H, Engelbrecht S, et al. Low loss and magnetic field-tunable superconducting terahertz metamaterial. Optics Express, 2010,18 (16): 17504~17509.
[55] Harris S E. Electromagnetically induced transparency. Physics Today, 1997, 50: 36.
[56] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media. Reviews Modern Physics, 2005, 77: 633.
[57] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials. Physical Review Letters, 2008,101: 047401.
[58] Wu J B, Jin B b, Wan J, et al. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Applied Physics Letters, 2011,99 (16): 161113.
PDF(9148616 KB)

3154

Accesses

0

Citation

Detail

Sections
Recommended

/