
Mineral assemblage of sulfide-bearing waste ores and its environmental implication in Dongguashan Cu-Au Mine, Tongling, Anhui Province
LI Juan, LU Jian-Jun*, LU Xian-Cai, LIU Huan, ZHU Xiang-yu, OUYANG Bing-jie
Journal of Nanjing University(Natural Sciences) ›› 2013, Vol. 49 ›› Issue (6) : 689.
Mineral assemblage of sulfide-bearing waste ores and its environmental implication in Dongguashan Cu-Au Mine, Tongling, Anhui Province
[1] Al T A, Blowes D W, Martin C J, Cabri L J, Jambor J L. Aqueous geochemistry and analysis of pyrite surface in sulfide-rich mine tailings. Geochimica.et Cosmochimica Acta, 1997, 61(12): 2353-2366.
[2] Apodaca L, Driver N, Bails J. Occurrence, transport and fate of trace elements, Blue River Basin, Summit country, Colorado: An integrated approach. Environmental Geology, 2000, 3(8): 901-913.
[3] Lu J J, LU X C, Zhu C J, et al. The effect of thiobacills ferrooxidans on the distribution of metal trace elements of acid mine drainage resulting in enviromental pollution.Journal of Nanjing University (Nature Sciences), 2005, 41(2):113~119.(陆建军,陆现彩,朱长见等. 氧化亚铁硫杆菌对矿山酸矿水中金属污染元素分布的影响.南京大学学报(自然科学),2005,41(2):113~ 119).
[4] Seal R R, II, Hammarstrom J M. Geoenvironmental models of mineral deposits: examples from massive sulfide and gold deposits. In Environmental Aspects of Mine Wastes (Jambor J L, Blowes D W& Ritchie A I M., eds.). Mineral. Assoc. Can., Short Course Handbook, 2003, 31: 11-50.
[5] 陈天虎 . 矿山尾矿矿物学研究进展 . 安徽地质 ,2001,11(1):64-67
[6] Blowes D W, Ptacek C J and Jurjovec J. Mill tailings: hydrogeology and geochemistry. In Environmental Aspects of Mine Wastes (Jambor J L, Blowes D W& Ritchie A I M., eds.). Mineral. Assoc. Can., Short Course Handbook, 2003a, 31: 95-116.
[7] Olson, G. J. 1991. Rate of pyrite bioleaching by Thiobacillus ferrooxidans: Results of an interlaboratory comparison. Applied and Environmental Microbiology 57, 642-644.
[8] Ehrlich, H.L. 1964. Bacterial oxidation of arsenopyrite and enargite. Economic Geology 59, 1306-1312.
[9] Ehrlich H L. How microbes influence mineral growth and dissolution. Chem Geol , 1996 , 132 : 5-9 .
[10] Xia, J.L., Yang, Y., He, H., Zhao, X.J, Liang, C.L. , Zheng, L., Ma, C.Y., Zhao, Y.D., Nie, Z.Y., Qiu, G.Z. 2010. Surface analysis of sulfur speciation on pyrite bioleached by extreme thermophile Acidianus manzaensis using Raman and XANES spectroscopy. Hydrometallurgy 100, 129-135.
[11] 陆建军,陆现彩,王睿勇,等. 多金属矿山环境中矿物的微生物分解及环境效应研究进展. 高校地质 学报, 2007 , 13(4): 621-629 .
[12] Fomina M , Burford E P , Hillier S , et al. Rock-building fungi. Geomicrobiology Journal , 2010 , 27: 624-629 .
[13] 陆现彩,屠博文,朱婷婷,等 . 风化过程中矿物表面微生物附着现象及意义 . 高校地质学报, 2011 , 17( 1) : 21-28 .
[14] Balogh-Brunstad Z , Keller C K , Dickinson J T , et al. Biotite weathering and nutrient uptake by ectomycorrhizal fungus , Sullus tomentosus , in liquid-culture experiments. Geochimica et Cosmochimica Acta , 2008 , 72 ( 11 ) : 2601-2608 .
[15] Karthe S, Szargan R, Suoninen E. Oxidation of pyrite surface: A photoelectron spectroscopic study. Applied Surface Science , 1993,72:157-170.
[16] Nesbitt H W, Muir I J . X-ray photoelectron spectroscopic studies of a pristine pyrite surface reacted with water vapour and air. Geochimica.et Cosmochimica Acta, 1994, 58(21):4667-4679.
[17] Williamson M A, Rimstidt J D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochimica.et Cosmochimica Acta, 1994, 58(24): 5443-5454.
[18] Schaufuß A G, Nesbitt H W, Kartio I, Laajalehto K, et al. Incipient oxidation of fractured pyrite surfaces in air. J. of Electron Spectroscopy and Related Phenomena., 1998,96(1): 69-82.
[19] Hochella M F, Jr, Moore J N, Putnis C V , et al. Direct observation of heavy metal – mineral association from the Clark Fork River Superfund Complex: implications for metal transport and bioavailability. Geochimica.et Cosmochimica Acta, 2005, 69:1651-1663.
[20] Jacqueline S, Naoki H, Masami T , et al. Carrier- microencapsulation for preventing pyrite oxidation. International Journal of mineral processing, 2007, 83:116-124.
[21] Ward C R. Analysis and significance of mineralmatter in coal seams. International Journal of CoalGeology, 2002, 50: 135–168.
[22] Querol X, Izquierdo M, Monfort E, Alvarez E, Font O, Moreno T, Alastuey A, Zhuang X,Lu W, Wang Y . Environmental characterizationof burnt coal gangue banks at Yangquan,Shanxi Province, China. International Journal of Coal Geology, 2008, 75:93–104.
[23] Haus K L, Hooper R L, Strumness L A, Mahoney J B. Analysis of arsenic speciation in mine contaminated lacustrine sediment using selective sequential extraction, HR-ICPMS and TEM. Applied Geochemistry, 2008, 23: 692–704.
[24] Silva L, Moreno T, Querol Q. An introductory TEM study of Fe-nanominerals within coal fly ash. Science of the Total Environment, 2009a, 407: 4972–4974.
[25] Luis F O Silva , Felipe Macias , Marcos L S Oliveira , M. Kátia da Boit , FransWaanders. Coal cleaning residues and Fe-minerals implications. Environ Monit Assess. 2011, 172:367–378
[26] Huang W L, Bishop A M, Brown R W. The effect of fluid/rock ratio on feldspar dissolution and illite formation under reservoir conditions. Clay Minerals (1986), 21: 585-601.
[27] Ha J, Hyun T Y, Wang Y, Musgrave C B, Brow N G E. Adsorption of organic matter at mineral/water interfaces: 7. ATR-FTIR and quantum chemical study of lactate interactions with hematite nanoparticles. Langmuir, 2008, 24: 6683–6692.
[28] Madden M E E, Bodnar R J, Rimstidt J D. Jarosite as an indicator of waterlimited chemical weathering on Mars. Nature, 2004, 431: 821–823.
[29] Schrenk M O, Edwards K J, Goodman R M, Hamers R J, Banfield J F. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: Implications for generation of acid mine drainage. Science, 1998, 279:1519-1522.
[30] Lu X C, Lu J J, Zhu C J, Liu X D, Wang R C, Li Q, Xu Z W. Preliminary study on surface properties of iron sulfate formed by microbially induced mineralization. Geological Journal of China Universities[J]. 2005, 2:52-56. (陆现彩,陆建军,朱长见,刘显东,王汝成,李奇,徐兆文 . 微生物矿化成因的铁硫酸盐矿物表面特征初探.高校地质学报. 2005 , 2 : 52 ~ 56 ) .
[31] Zhu C J, Lu J J, Lu X C, Wang R C, Li Q. SEM study on jarosite mediated by Thiobacillus ferrooxidans. Geological Journal of China Universities. 2005,11(2):234-238. ( 朱长见,陆建军,陆现彩,王汝成,李奇 . 氧化亚铁硫杆菌作用下形成的黄钾铁矾的 SEM 研究 . 高校地质学报 . 2005,11(2):234-238.
[32] Li J, Lu J J, Lu X C, Wang R C, Su G Z. Experimental study on the oxidation of chalcopyrite by Acidothiobacillus ferrooxidans. Journal of Nanjing University(Natural Sciences). 2009, 45(2):315-322. (李娟,陆建军,陆现彩,王汝成,苏贵珍. 氧化亚铁硫杆菌氧化黄铜矿的实验研究.南京大学学报(自然科学)[J].2009, 45(2):315-322).
[33] 邹知华.加强矿山环境保护促进矿业持续发展.中国矿业, 1994, 3(2) : 9-13.
[34] Lu J J, Lu X C, Wang R C, Li J, Zhu C J, Gao J F. Pyrite Surface after Thiobacillus ferrooxidans Leaching at 30°C. Acta Geologica Sinica, 2006, 80(3):451-455.
[35] Waanders F B, Vinken E, Mans A, Mulaba-Bafubiandi A F. Iron minerals in coal, weathered coal and coal Ash-SEM and Moessbauer results. Hyperf ine Interactions, 2003, 148/149(1–4/1–4): 21–29.
[36] Lu L, Wang R C, Chen F R, Xue J Y, Zhang P H, Lu J J. Element mobility during pyrite weathering: implications for acid and heavy metalpollution at mining-impacted sites. Environment Geology. 2005, 49:82-89.
[37] Henao D M O and Godoy M A M. Jarosite pseudomorph formation from arsenopyrite oxidation using Acidithiobacillus ferrooxidans. Hydrometallurgy, 2010. 104(2): 162-168.
[38] Stoffregen R E, Alpers C N, Jambor J L. Alunite-jarosite crystallography, thermodynamics, and geochronology. In C. N. Alpers, et al. (Ed.), Sulfate minerals: Crystallography, geochemistry, and environmental signif icance, reviews in mineralogy. Mineralogical Society of America. 2000, Vol. 40, pp: 453–479.
[39] Zhu W, Young L Y, Yee N, Serfes M, Rhine E D, and Reinfelder J R. Sulphide driven arsenic mobilization from arsenopyrite and black shale pyrite. Geochim. Cosmochim. Acta, 2008. 72: 5243–5250.
/
〈 |
|
〉 |