An ingredientbased operational heavy rain quantitative forecast system

 T ang XiaoWen 1 , T ang Jian?Ping 1 , Zhang XiaoLing 2

Journal of Nanjing University(Natural Sciences) ›› 2010, Vol. 46 ›› Issue (3) : 277-283.

Journal of Nanjing University(Natural Sciences) ›› 2010, Vol. 46 ›› Issue (3) : 277-283.

 An ingredientbased operational heavy rain quantitative forecast system

  •  T ang XiaoWen 1 , T ang Jian?Ping 1 , Zhang XiaoLing 2
Author information +
History +

Abstract

 An ingredientbased heavy rain quantitative forecast method based on the operational mesoscale numerical model is proposed and put into quasi operational use in the National Meterological Center ( NM C) . Based
on the principal that longlasting deep convective system could lead to heavy rain, a group of variables, or say, ingredients that have significant influence on the occurrence of heavy rain are selected according to the different
climate background in different regions of China. T he selected variables are then divided into four categoriesaccording to their different physical characters. Under those certain physical constraints, the actual effects of these
variables are converted into a non dimensional value, which could be used as an indicator for the forecast of heavy rain. This system uses the output of MM5 operationally used by NMC, and produces daily forecast of heavy rain for
total 737 stations over China∀ s mainland. Comparing the forecast with MM5∀ s precipitation forecast in the summer during the period of 2004~ 2007, the skill score of ingredient?based method is superior to MM5∀ s forecast. This
new method is therefore of great value in practical use.

Cite this article

Download Citations
 T ang XiaoWen 1 , T ang Jian?Ping 1 , Zhang XiaoLing 2 .  An ingredientbased operational heavy rain quantitative forecast system

[J]. Journal of Nanjing University(Natural Sciences), 2010, 46(3): 277-283

References

 [ 1 ] Zhai G D, Ding H J, Sun S Q, et al. Physical characteristics of heavy rainfall associated with strong low level jet. Chinese Journal of Atmos
pheric Sciences, 1999, 23( 1) : 112~ 118. ( 翟国庆, 丁华君, 孙淑清等. 与低空急流相伴的暴雨天气诊断研究. 大气科学, 1999, 23( 1): 112~ 118) .
[ 2 ] Zhang X L, Tao S Y, Zhang S L. Three types of heavy rainstorms associated with the Meiyu front. Chinese Journal of Atmospheric Sciences, 2004, 28( 2) : 187~ 205. ( 张小玲, 陶诗言,
张顺利. 梅雨锋上的三类暴雨. 大气科学, 2004, 28(2): 187~ 205).
[ 3 ] Tao S Y. Heavy rain of China. Beijing: Science Press, 1980. ( 陶诗言. 中国之暴雨. 北京: 科学出版社, 1980) .
[ 4 ] Fritsch J M, Houze R A, Adler R, et al. Quantative precipitation forecasting report of the eight prospectus development team, U. S.weather research program. Bulletin of the American M eteorological Society, 1998, 79( 2) :
[ 5 ] Wu R S, Tan Z M, Wang Y. Discussions on the scientific and technological development of Chinese operation weather forecast. Scientia
Meteorologica Sinica, 2007, 27( 1): 112~ 118. ( 伍荣生, 谈哲敏, 王?元. 我国业务天气预报发展的若 干问题思 考. 气象科 学, 2007, 27 ( 1) : 112~ 118) .
[ 6 ] Klein W H. Objective prediction of five day mean temperatures during winter. Journal of Meteorology, 1959, 16: 672~ 682.
[ 7 ] Glahn H R. The use of model output statistics ( MOS) in objective weather forecasting. Journal of Applied Meteorology, 1972, 11: 1203~ 1211.
[ 8 ] Jiang Y Q, Song J J. Sensitivity experiments of a severe storm in Jiangxi province. Journal of Nanjng University( Natural Sciences), 2010, 46
( 3) : 261~ 276. ( 姜勇强, 宋金杰. 江西一次强风暴过程的敏感性试验. 南京大学学报( 自然科学) , 2010, 46(3): 261~ 276) .
[ 9 ] Doswell C A. Flash flood forecasting: An ingredientbased methodology. Weather and Fore casting, 1996, 11: 560~ 581.
[ 10] Nietfeld D D, Kennedy D A. Forecasting snow fall amounts: an ingredients?based methodology supporting the Garcia method. 16 th Conference
on Weather Analysis and Forecasting. Phoenix: American Meteorology Society, 1998, 385~ 387.
[ 11] Wetzel S W. An operational ingredients based methodology for forecasting midlatitude winter season precipitation. Weather and Forecasting, 2000, 16: 156~ 167.
[ 12] Lai X F, Zhang Y L, Lu H C. An ingredientsbased methodology for forecasting rainstorm in the lower reaches of the Yangtze River. Journal
of Nanjing Institute of Meteorology, 2007, 30 (4): 556~ 560. (来小芳, 张艳玲, 陆汉城等. 配料法! 用于长江中下游暴雨预报. 南京气象学院学报, 2007, 30(4): 556~ 560) .
[ 13] Li J, Li W, Liao Y S. An ingredientsbased methodology of forecasting heavy rain of Meiyu front. M eteorological Monthly, 2006, 32( 9):
3~ 8. ( 李俊, 李武阶, 廖移山. 基于 配料! 的梅雨锋强降 水预报 方法. 气象, 2006, 32 (9): 3~ 8).
[ 14] Grell J D, Stauffer D R. A description of the fifthgeneration Penn State/ NCAR Mesoscale Model (MM5). NCAR/TN- 398+ STR, 1995.
[ 15] Wang C M, Wang Y, Wu R S. The effect of model horizontal resolution on quantitative precipitation forecast for Meiyu front torrential
rainfall. Journal of Hydrodynamics, 2004, 19 (1): 71~ 80. ( 王春明, 王?元, 伍荣生. 模式水平分辨率对梅雨锋降水定量预报的影响. 水动力学研究与进展, 2004, 19(1): 71~ 80).
[ 16] Wilks D S. Statistical Methods in the Atmospheric Sciences. 2 nd Ed. New York: Academic Press, 2005.
[ 17] Brooks H E, Doswell C A III. A comparison of measures oriented and distributions oriented approaches to forecast verification. Weather and Forecasting, 1996, 11: 288~ 303
[ 18] Liu J W, Guo H, Li Y D. The calculation of meteorological variables used in analysis and forecast. Beijing: China Meteorological Press, 2007. ( 刘健文, 郭?虎, 李耀东等. 天气分析预报物理计算基础. 北京: 气象出版社, 2007).

1025

Accesses

0

Citation

Detail

Sections
Recommended

/