南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (1): 176–.

• • 上一篇    下一篇

 针铁矿与石膏联合制约脱卤功能菌对2,4-二氯苯酚的厌氧转化

 孔殿超,周跃飞*,陈天虎,王 进,李 碧   

  • 出版日期:2018-01-31 发布日期:2018-01-31
  • 作者简介: 合肥工业大学资源与环境工程学院,纳米矿物与环境材料实验室,合肥,230009
  • 基金资助:
     基金项目:国家自然科学基金(41372046,41130206,41572029)
    收稿日期:2017-12-08
    *通讯联系人,E-mail:alphazhou@hfut.edu.cn

 Integrated effect of goethite and gypsum on the anaerobic conversion of 2,4-dichlorophenol by dehalogenation bacteria

 Kong Dianchao,Zhou Yuefei*,Chen Tianhu,Wang Jin,Li Bi   

  • Online:2018-01-31 Published:2018-01-31
  • About author: Laboratory of Nanominerals and Environmental Materials,School of Resources and Environmental Engineering,Hefei University of Technology,Hefei,230009,China

摘要:  以针铁矿(goethite,Gt)作为铁氧化物矿物代表、石膏(gypsum,Gp)作为硫酸盐矿物的代表,考察两种矿物添加比例不同对2,4-二氯苯酚(2,4-dichlorophenol,2,4-DCP)厌氧微生物转化的影响.结果表明,两种矿物对2,4-DCP几乎没有吸附作用,反应体系中仅发生2,4-DCP向4-氯苯酚(4-chlorophenol,4-CP)的转化;在无外加碳源条件下,所有添加Gt和Gp的实验中2,4-DCP的降解均受到强烈抑制,并且抑制效果与Gt和Gp的比例无关;添加乙酸钠条件下,矿物对2,4-DCP降解的抑制作用与Gt/Gp比值有关,随着Gt/Gp的减小,2,4-DCP的降解速率逐渐下降,降解率逐渐降低.分析认为Gp溶解释放的SO2-4抑制了2,4-DCP的降解,机制为:(1)与脱卤功能菌竞争有机底物;(2)营造不利于脱卤功能菌生长的氧化还原及S2-条件.添加Gt后S2-部分以铁硫化物的形式被固定,同时氧化还原电位上升,脱卤功能菌的生长条件得到改善.研究认为,自然条件下Gp对卤代酚类有机污染物的厌氧微生物转化有潜在抑制作用,铁氧化物可在一定程度上缓解该作用.

Abstract:  As respective representatives of iron oxides and sulfate minerals,goethite and gypsum were added into experimental systems with variable ratios to investigate their synergic effect on the anaerobic microbial conversion of 2,4-dichlorophenol(2,4-DCP).The results showed that no 2,4-DCP was adsorbed by the two minerals.Mass balance analysis noted that only the conversion of 2,4-DCP to 4-chlorophenol(4-CP)occurred in all experiments.In experiments without excessive carbon source,the conversion of 2,4-DCP was strongly restrained at the addition of goethite and gypsum,unrelated to mineral ratios.In experiments with the addition of sodium acetate,inhibitory effects by the two minerals on the conversion of 2,4-DCP were related to the ratio of goethite to gypsum,as the ratio decreased,the degradation rate and degree of 2,4-DCP declined gradually.Further analysis indicated that SO2-4 released from the gypsum restrained the conversion of 2,4-DCP by these mechanisms:(1)competing with dechlorination bacteria for organic substrates;(2)decreasing the anaerobic environmental redox potential and generating more S2-,which would be unfavorable for the growth of dechlorination bacteria.S2- could be partly fixed as iron sulfide by goethite,which would increase the systems’ redox potential and improve the growth conditions for dehalogenation bacteria.This study suggests that gypsum has potential inhibitory effects on the anaerobic transformation of the halogenated phenols under natural conditions while iron oxides could alleviate these effects to a certain extent.

 [1] Olaniran A O,Igbinosa E O.Chlorophenols and other related derivatives of environmental concern:Properties,distribution and microbial degradation processes.Chemosphere,2011,83(10):1297-1306.doi:10.1016/j.chemosphere.2011.04.009.
[2] Hassan H,Schulte-Illingheim L,Jin B,et al.Degradation of 2,4-dichlorophenol by Bacillus subtilis with concurrent electricity generation in microbial fuel cell.Procedia Engineering,2016,148:370-377.doi:10.1016/j.proeng.2016.06.473.
[3] Ma Y B,Han J,Guo Y Y,et al.Disruption of endocrine function in in vitro H295R cell-based and in in vivo assay in zebrafish by 2,4-dichlorophenol.Aquatic Toxicology,2012,106-107:173-181.doi:10.1016/j.aquatox.2011.11.006.
[4] Angelini V A,Orejas J,Medina M I,et al.Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots.Journal of Hazardous Materials,2011,185(1):269-274.doi:10.1016/j.jhazmat.2010.09.028.
[5] Zhang X N,Huang W M,Wang X,et al.Biofilm-electrode process with high efficiency for degradation of 2,4-dichlorophenol.Environmental Chemistry Letters,2011,9(3):383-388.doi:10.1007/s10311-010-0290-2.
[6] Nezamzadeh-Ejhieh A,Ghanbari-Mobarakeh Z.Heterogeneous photodegradation of 2,4-dichlorophenol using FeO doped onto nano-particles of zeolite P.Journal of Industrial and Engineering Chemistry,2015,21:668-676.doi:10.1016/j.jiec.2014.03.035.
[7] Arora P K,Bae H.Bacterial degradation of chlorophenols and their derivatives.Microbial Cell Factories,2014,13(1):31.doi:10.1186/1475-2859-13-31.
[8] van Agteren M H,Keuning S,Janssen D B.Handbook on biodegradation and biological treatment of hazardous organic compounds.New York:Kluwer Academic Publishers,1998.doi:10.1007/978-94-015-9062-4.
[9] 韩方岸,胡 云,吉文亮等.长江江苏段主要城区水源有机污染物分布研究.实用预防医学,2009,16(1):3-8.(Han F A,Hu Y,Ji W L,et al.Study on distribution of organic pollutants of Yangtze River water in main cities of Jiangsu.Practical Preventive Medicine,2009,16(1):3-8.) 
[10] 董 军,李向丽,栾天罡等.珠江口地区沉积物中酚类物质污染及其生态安全评价.安全与环境学报,2009,9(5):113-116.(Dong J,Li X L,Luan T G,et al.Phenol pollution in the sediments of the Pearl River estuary area and its potential risk assessment to the eco-security.Journal of Safety and Environment,2009,9(5):113-116.)
[11] 李晓敏,李永涛,李芳柏等.有机氯脱氯转化的铁还原菌与铁氧化物界面的交互反应.科学通报,2009,54(13):1880-1884.(Li X M,Li Y T,Li F B,et al.Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organiccompounds.Chinese Science Bulletin,2009,54(16):2800-2804.) 
[12] Bae S,Lee W.Enhanced reductive degradation of carbon tetrachloride by biogenic vivianite and Fe(Ⅱ).Geochimica et Cosmochimica Acta,2012,85:170-186.doi:10.1016/j.gca.2012.02.023.
[13] Aulenta F,Beccari M,Majone M,et al.Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures.Process Biochemistry,2008,43(2):161-168.doi:10.1016/j.procbio.2007.11.006.
[14] Barton L L.Sulfate-reducing bacteria.Boston,MA,USA:Springer,1995.doi:10.1007/978-1-4899-1582-5.
[15] Yue Z B,Liu R H,Yu H Q,et al.Enhanced anaerobic ruminal degradation of bulrush through steam explosion pretreatment.Industrial & Engineering Chemistry Research,2008,47(16):5899-5905.doi:10.1021/ie800202c.
[16] Boyle A W,Knight V K,Hggblom M M,et al.Transformation of 2,4-dichlorophenoxyacetic acid in four different marine and estuarine sediments:effects of sulfate,hydrogen and acetate on dehalogenation and side-chain cleavage.FEMS Microbiology Ecology,1999,29(1):105-113.doi:10.1111/j.1574-6941.1999.tb00602.x.
[17] Zanaroli G,Balloi A,Negroni A,et al.A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions.Journal of Hazardous Materials,2012,209-210:449-457.doi:10.1016/j.jhazmat.2012.01.042.
[18] Wu C Y,Zhuang L,Zhou S G,et al.Fe(Ⅲ)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01.FEMS Microbiology Ecology,2010,71(1):106-113.doi:10.1111/j.1574-6941.2009.00796.x.
[19] Klausen J,Troeber S P,Haderlein S B,et al.Reduction of substituted nitrobenzenes by Fe(II)in aqueous mineral suspensions.Environmental Science & Technology,1995,29(9):2396-2404.doi:10.1021/es00009a036.
[20] Chen Y C,Zhan H Y,Chen Z H,et al.Coupled anaerobic/aerobic biodegradation of 2,4,6 trichlorophenol.Journal of Environmental Sciences,2003,15(4):469-474.doi:10.3321/j.issn:1001-0742.2003.04.006.
[21] Chen Y,Cheng J J,Creamer K S.Inhibition of anaerobic digestion process:a review.Bioresource Technology,2008,99(10):4044-4064.doi:10.1016/j.biortech.2007.01.057.
[22] Cao J Y,Zhang G J,Mao Z S,et al.Influence of electron donors on the growth and activity of sulfate-reducing bacteria.International Journal of Mineral Processing,2012,106-109:58-64.doi:10.1016/j.minpro.2012.02.005.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!