南京大学学报(自然科学版) ›› 2017, Vol. 53 ›› Issue (5): 894–.

• • 上一篇    下一篇

 纳米氧化锌暴露对沉水植物金鱼藻的毒性效应

 赵桂琦,周 燕,尹 颖*,郭红岩   

  • 出版日期:2017-09-25 发布日期:2017-09-25
  • 作者简介: 南京大学环境学院,南京,210023
  • 基金资助:
     基金项目:江苏省基础研究计划面上研究(BK20161404)
    收稿日期:2017-06-05
    *通讯联系人,E-mail:yinying@nju.edu.cn

 The toxic effects of zinc oxide nanoparticles exposure on submersed macrophyte Ceratophyllum demersum

 Zhao Guiqi,Zhou Yan,Yin Ying*,Guo Hongyan   

  • Online:2017-09-25 Published:2017-09-25
  • About author: School of the Environment,Nanjing University,Nanjing,210023,China

摘要:  纳米氧化锌(ZnO NPs)在水环境中的存在形态对水生植物的生态风险有重要影响,研究了ZnO NPs在水体中的稳定性及对沉水植物金鱼藻的毒性效应.ZnO NPs进入到培养液中后观察到明显的团聚行为,且团聚体粒径随着浓度的升高逐渐增加,放置7天后其粒径要远大于实验初始粒径.另一方面,ZnO NPs释放了0.08~4.54 mg·L-1的锌离子(Zn2+)到培养液中,加入金鱼藻使纳米颗粒的离子释放量显著降低(0.06~3.88 mg·L-1).金鱼藻体内的锌含量随着ZnO NPs暴露浓度的升高而显著增加.金鱼藻体内超氧阴离子(O-2·)含量,过氧化物酶(POD)活性先升高后降低,膜脂质过氧化产物丙二醛(MDA)含量逐渐升高,均表明金鱼藻受到了氧化胁迫.同时金鱼藻的叶绿素含量在ZnO NPs暴露下也显著降低,但透射电镜结果显示其叶绿体形态并未受到影响.研究认为金属离子的释放是ZnO NPs致毒的重要原因.

Abstract:  The toxic effects of zinc oxide nanoparticles(ZnO NPs)(0.1~50 mg·L-1)on Ceratophyllum demersum were determined to investigate the potential risk of metal-based nanoparticles on aquatic macrophytes,as well as the factors affecting the stabilization of ZnO NPs aggregates.Once the nanoparticles were introduced to the test medium,they underwent significantly agglomeration at all the five exposure concentrations with large particles settled out of the suspension and accumulated in the bottom of vessels in 50 mg·L-1 nanoparticles treatment.And the size of particle aggregates was remarkably influenced by the existence of Ceratophyllum demersum.This result might mainly be caused by the reduction of the inter-particle repulsion.During exposure period,ZnO NPs released large amount of zinc ions(Zn2+)into the medium,while the existence of Ceratophyllum demersum inhibited the release of Zn2+.And the accumulation of Zn2+ in plants significantly increased with the increase of ZnO NPs concentration.The O-2· content and peroxidase(POD)activity increased at first and then decreased with the exposure concentration,while MDA contents increased with the increase of ZnO NPs concentration,which meant that the lipid peroxidation occurred in plant cells.These results showed that Ceratophyllum demersum was adversely affected by the oxidative stress caused by ZnO NPs.The contents of chlorophyll a and b in Ceratophyllum demersum were decreased in 10 mg·L-1 and 50 mg·L-1 ZnO NPs treatments,which indicated that the photosynthetic activity was influenced by nanoparticles.Results suggest that the release of Zn2+ from ZnO NPs would be the main reason causing toxicities in plants.

 [1] Colvin V L.The potential environmental impact of engineered nanomaterials.Nature Biotechnology,2003,21(10):1166-1170.
[2] Nel A,Xia T,Mdler L,et al.Toxic potential of materials at the nanolevel.Science,2006,311(5761):622-627.
[3] Bowker M,Hadden R A,Houghton H,et al.The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts.ChemInform,1988,19(23):263-273.
[4] Espitia P J P,de Ftima Ferreira Soares N,Dos Reis Coimbra J S,et al.Zinc oxide nanoparticles:Synthesis,antimicrobial activity and food packaging applications.Food and Bioprocess Technology,2012,5(5):1447-1464.
[5] Janotti A,Van de Walle C G.Fundamentals of zinc oxide as a semiconductor.Reports on Progress in Physics,2009,72(12):126501-126529. 
[6] Moezzi A,McDonagh A M,Cortie M B.Zinc oxide particles:Synthesis,properties and applications.Chemical Engineering Journal,2012,185-186:1-22.
[7] Ma H B,Williams P L,Diamond S A.Ecotoxicity of manufactured ZnO nanoparticles - A review.Environmental Pollution,2013,172:76-85.
[8] Ghosh M,Jana A,Sinha S,et al.Effects of ZnO nanoparticles in plants:Cytotoxicity,genoto-xicity,deregulation of antioxidant defenses,and cell-cycle arrest.Mutation Research/genetic Toxicology and Environmental Mutagenesis,2016,807:25-32.
[9] Du W C,Sun Y Y,Ji R,et al.TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil.Journal of Environmental Monitoring,2011,13(4):822-828.
[10] Rao S,Shekhawat G S.Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth,metabolism and tissue specific accumulation in Brassica juncea.Journal of Environmental Chemical Engineering,2014,2(1):105-114.
[11] Song U,Lee S.Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis:Leaf-type-dependent responses.Environmental Science and Pollution Research,2016,23(9):8539-8545.
[12] Chen X L,O’Halloran J,Jansen M A K.The toxicity of zinc oxide nanoparticles to Lemna minor(L.)is predominantly caused by dissolved Zn.Aquatic Toxicology,2016,174:46-53.
[13] Hu C W,Liu Y M,Li X L,et al.Biochemical responses of duckweed(Spirodela polyrhiza)to zinc oxide nanoparticles.Archives of Environmental Contamination and Toxicology,2013,64(4):643-651.
[14] Keller A A,McFerran S,Lazareva A,et al.Global life cycle releases of engineered nanomaterials.Journal of Nanoparticle Research,2013,15(6):1692-1708.
[15] 崔 静,袁旭音,刘 泉等.环境水体中纳米氧化铜对金鱼藻的毒性效应研究.农业环境科学学报,2013,32(5):910-915.(Cui J,Yuan X Y,Liu Q,et al.Toxic effects of low concentration copper oxide nanoparticles on Ceratophyllum demersum in the aquatic environment.Journal of Agro-Environment Science,2013,32(5):910-915.)
[16] Jiang J K,Oberdrster G,Biswas P.Characterization of size,surface charge,and agglomeration state of nanoparticle dispersions for toxicological studies.Journal of Nanoparticle Research,2009,11(1):77-89.
[17] Balen B,Tkalec M,ikic' S,et al.Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc.Ecotoxicology,2011,20(4):815-826.
[18] Beauchamp C,Fridovich I.Superoxide dismutase:Improved assays and an assay applicable to acrylamide gels.Analytical Biochemistry,1971,44(1):276-287.
[19] Heath R L,Packer L.Photoperoxidation in isolated chloroplasts:I.Kinetics and stoichiometry of fatty acid peroxidation.Archives of Biochemistry and Biophysics,1968,125(1):189-198.
[20] Jana S,Choudhuri M A.Glycolate metabolism of three submersed aquatic angiosperms during ageing.Aquatic Botany,1982,12:345-354.
[21] Wang J,Zhao F,Chen B H,et al.Small water clusters stimulate microcystin biosynthesis in cyanobacterial Microcystis aeruginosa.Journal of Applied Phycology,2013,25(1):329-336.
[22] 陈 辉,施国新,徐勤松等.Cr6+对菹草叶绿素荧光参数、抗氧化系统和超微结构的胁迫影响.植物研究,2009,29(5):559-564.(Chen H,Shi G X,Xu Q S,et al.Toxic effects of Cr6+ on chlorophyll fluorescence parameters,antioxidant systems and ultrastructure of Potamogeton crispus.Bulletin of Botanical Research,2009,29(5):559-564.)
[23] 郭 敏.典型人工纳米材料对水稻的植物毒性研究.硕士学位论文.长沙:湖南大学,2016,31-33.(Guo M.Phytotoxicity of typical manufac-tured nanomaterials on rice seedlings(Oryza sativa L.).Master Dissertation.Changsha:Hunan University,2016,31-33.)
[24] Keller A A,Wang H T,Zhou D X,et al.Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices.Environmental Science & Technology,2010,44(6):1962-1967.
[25] Johnston B D,Scown T M,Moger J,et al.Bioavailability of nanoscale metal oxides TiO2,CeO2,and ZnO to fish.Environmental Science & Technology,2010,44(3):1144-1151.
[26] Thwala M,Musee N,Sikhwivhilu L,et al.The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters.Environmental Science:Processes & Impacts,2013,15(10):1830-1843.
[27] 刘 俊,张清东,马芸莹等.金鱼藻对富营养化水体营养源的净化作用.西南农业学报,2012,25(1):257-260.(Liu J,Zhang Q D,Ma Y Y,et al.Purification effect on nutrient source by Ceratophyllum demersum in eutrophic water.Southwest China Journal of Agricultural Sciences,2012,25(1):257-260.)
[28] Carpita N,Sabularse D,Montezinos D,et al.Determination of the pore size of cell walls of living plant cells.Science,1979,205(4411):1144-1147. 
[29] Asli S,Neumann P M.Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport.Plant,Cell & Environment,2009,32(5):577-584.
[30] Johansson M W,Keyser P,Sritunyalucksana K,et al.Crustacean haemocytes and haematopoiesis.Aquaculture,2000,191(1-3):45-52.
[31] Chapple I L C.Reactive oxygen species and antioxidants in inflammatory diseases.Journal of Clinical Periodontology,1997,24(5):287-296.
[32] 王 振,张立敏,田 阳.超氧阴离子自由基电化学分析的新进展.分析化学,2014,42(1):1-9.(Wang Z,Zhang L M,Tian Y.Progress on electrochemical determination of superoxide anion.Chinese Journal of Analytical Chemistry,2014,42(1):1-9.)
[33] Jiang H S,Qiu X N,Li G B,et al.Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza.Environmental Toxicology and Chemistry,2014,33(6):1398-1405.
[34] Tang Y L,Li S Y,Lu Y,et al.The influence of humic acid on the toxicity of nano-ZnO and Zn2+ to the Anabaena sp.Environmental Toxicology,2015,30(8):895-903.
[35] Hu C W,Liu X,Li X L,et al.Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nanoparticles and zinc accumulation in plants.Environmental Science and Pollution Research,2014,21(1):732-739.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!