南京大学学报(自然科学版) ›› 2017, Vol. 53 ›› Issue (1): 199–.

• • 上一篇    

Mg2+诱导丙氨酸质子迁移机理的理论研究

孟祥军*,石 瑾   

  • 出版日期:2017-01-19 发布日期:2017-01-19
  • 作者简介:唐山师范学院,唐山,063000
  • 基金资助:
    基金项目:河北省高等学校科学技术研究青年基金(QN2014312) 收稿日期:2016-12-04 *通讯联系人,E­mail:xjmeng_1974@126.com

Theoretical study on proton transfer mechanism of alanine induced by Mg2+

Meng Xiangjun*,Shi Jin   

  • Online:2017-01-19 Published:2017-01-19
  • About author:Department of Chemistry,Tangshan Normal University,Tangshan,063000,China

摘要: 采用M06/6­31++G**方法研究了Mg2+诱导丙氨酸质子迁移机理,得到8个稳定构型和7个过渡态.最稳定构型Ⅰ是两性的,结合能为-687.0 kJ•mol-1;其余7个是中性的.分子内单键旋转和羧基O原子间的质子迁移导致中性构型间的转化.C—C键旋转的能垒低于16.0 kJ•mol-1;C—O键旋转的能垒低于60.0 kJ•mol-1;质子在羧基O原子间迁移能垒高于105.6 kJ•mol-1.质子从羧基迁移到氨基导致中性构型转化为两性构型,能垒为0.2 kJ•mol-1.最稳定中性构型Ⅱ转化为两性构型Ⅰ的路径为:Ⅱ→Ⅱ-Ⅲ→Ⅲ→Ⅲ-Ⅶ→Ⅶ→Ⅵ-Ⅶ→Ⅵ→Ⅵ-Ⅷ→Ⅷ→Ⅴ-Ⅷ→Ⅴ→Ⅰ-Ⅴ→Ⅰ.

Abstract: M06/6­31++G** method was applied to investigate the proton transfer mechanism of [Mg2+•Ala].Eight optimized stable configurations are obtained.The most stable configuration I is amphoteric and the rest seven are neutral.The eight stable configurations converts via seven transition states.Mg2+ coordinates to alanine with bis­dentate and mono­dentate coordination modes.The most stable amphoteric configuration I and neutral configuration II adopt bis­dentate mode with binding energies of -687.0 and -656.6 kJ•mol-1,respectively.In addition,the rotation of intramolecular single bond leads to the neutral configuration conversion,in which the rotation energy barriers of C—C single bonds are lower than 16.0 kJ•mol-1,and those of C—O single bonds are lower than 60.0 kJ•mol-1.On the other hand,the proton transfers among the carboxylic oxygen atoms can also result in the neutral configuration conversion,whose energy barriers of forward/back reaction are 194.9 and 105.6 kJ•mol-1,respectively.In detail,the proton transfers from carboxylic group to amino lead to their configuration conversion from neutral to amphoteric,in which the energy barrier is 0.2 kJ•mol-1.The binding energies of all stable structures seem high(larger than 492.1 kJ•mol-1),which are much higher than those in the configuration conversions.So,the configuration conversion is thermodynamic control rather than dynamic control.after the Mg2+ interacts with alanine,the positive charge on Mg2+ decreases larger than 0.14,suggesting that the electronic cloud tends to the Mg center,and the dipole moments of all the systems increase by over 6.0 Debye.The reaction pathway from the most stable neutral structure to the most stable zwitterionic structure is Ⅱ→Ⅱ-Ⅲ→Ⅲ→Ⅲ-Ⅶ→Ⅶ→Ⅵ-Ⅶ→Ⅵ→Ⅵ-Ⅷ→Ⅷ→Ⅴ-Ⅷ→Ⅴ→Ⅰ-Ⅴ→Ⅰ,and the highest energy barrier of this reaction pathway is 139.9 kJ•mol-1.

[1] 田善喜.氨基酸分子构象稳定性与光电离解离动力学的氢键效应.化学进展,2009,21(4):601-605.(Tian S X.Hydrogen bonding effects on conformational stabilities and dissociative photoionization dynamics of amino acids.Progress in Chemistry,2009,21(4):601-605.) [2] 钟 亮,胡勇军,邢 达等.生物分子的微溶剂化过程.化学进展,2010,22(1):1-7.(Zhong L,Hu Y J,Xing D,et al.Microsolvation process of biomolecules.Progress in Chemistry,2010,22(1):1-7.) [3] Suenram R D,Lovas F J.Millimeter wave spectrum of glycine,a new conformer.Journal of the American Chemical Society,1980,102(24):7180-7184. [4] Bonaccorsi R,Palla P,Tomasi J.Conformational energy of glycine in aqueous solutions and relative stability of the zwitterionic and neutral forms.An ab initio study.Journal of the American Chemical Society,1984,106(7):1945-1950. [5] Balta B,Aviyente V.Solvent effects on glycine.I.A supermolecule modeling of tautomerization via intramolecular proton transfer.Journal of Computational Chemistry,2003,24(14):1789-1802.  [6] Aikens C M,Gordon M S.Incremental solvation of nonionized and zwitterionic glycine.Journal of the American Chemical Society,2006,128(39):12835-12850. [7] Bachrach S M.Microsolvation of Glycine:A DFT study.The Journal of Physical Chemistry A,2008,112(16):3722-3730. [8] 孟祥军,郭小松,贾俊芳等.5水合甘氨酸复合物的结构和性能的理论研究.化学学报,2011,69(1):25-36.(Meng X J,Guo X S,Jia J F,et al.Theoretical study on structures and properties of gly­(H2O)5.Acta Chimica Sinica,2011,69(1):25-36.) [9] Hidenori M,Misako A.Ab initio QM/MM­MC study on hydrogen transfer of glycine tautomerization in aqueous solution:Hhelmholtz energy changes along water­mediated and direct processes.Chemistry Letters,2013,42(6):598-600. [10] Pulkkinen S,Noguera M,Rodríguez­Santiago L,et al.Gas phase intramolecular proton transfer in cationized glycine and chlorine substituted derivatives(M-gly,M=Na+,Mg2+,Cu+,Ni+,and Cu2+):existence of zwitterionic structures?Chemistry - A European Journal,2000,6(23),4393-4399. [11] 孟祥军.Cu2+诱导甘氨酸质子迁移机理的理论研究.中国科学(化学),2013,43(7):881-888.(Meng X J.Theoretical study on proton transfer mechanism of glycine induced by Cu2+.Scinece in China,Series B,2013,43(7):881-888.) [12] 孟祥军,石 瑾,赵红丽.Ni2+催化甘氨酸质子迁移机理的理论研究.南开大学学报(自然科学版),2016,49(1):78-84.(Meng X J,Shi J,Zhao H L.The mechanisms of proton transfer of glycine induced by Ni2+.Acta Scientiarum Naturalium Universitatis Nankaiensis,2016,49(1):78-84. [13] Johnson B G,Gill P M W,Pople J A.The performance of a family of density functional methods.The Journal of Chemical Physics,1993,98(7):5612-5626. [14] Sousa S F,Fernandes P A,Ramos M J.General performance of density functionals.The Journal of Chemical Physics A,2007,111(42):10439-10452.  [15] Reddy A S,Sastry N G.Cation[M=H+,Li+,Na+,K+,Ca2+,Mg2+,NH+4,and NMe+4]interactions with the aromatic motifs of naturally occurring amino acids:A theoretical study.The Journal of Chemical Physics A,2005,109(39):8893-8903. [16] Rimola A,Rodríguez­Santiago L,Sodupe M.Cation­π interactions and oxidative effects on Cu+ and Cu2+ binding to Phe,Tyr,Trp,and His amino acids in the gas phase.Insights from first­principles calculations.The Journal of Chemical Physics B,2006,110(47):24189-24199. [17] Zhao Y,Truhlar D G.The M06 suite of density functionals for main group thermochemistry,thermochemical kinetics,noncovalent interac­tions,excited states,and transition elements:Two new functionals and systematic testing of four M06­class functionals and 12 other functionals.Theoretical Chemistry Accounts,2008,120(1-3):215-241. [18] 孙 涛,王一波.用GGA密度泛函及其长程色散校正方法计算各类氢键的结合能.物理化学学报,2011,27(11):2553-2558.(Sun T,Wang Y B.Calculation of the binding energies of different types of hydrogen bonds using GGA density functional and its long­range,empirical dispersion correction methods.Acta Physico­Chimica Sinica,2011,27(11):2553-2558.)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!