南京大学学报(自然科学版) ›› 2017, Vol. 53 ›› Issue (1): 61–.

• • 上一篇    下一篇

基于分形声学超材料的宽带声聚焦透镜

宋刚永1,黄 蓓1,宋 海2,程 强1*   

  • 出版日期:2017-01-19 发布日期:2017-01-19
  • 作者简介:1东南大学毫米波国家重点实验室,南京,210096;2北方信息控制集团有限公司,南京,211106
  • 基金资助:
    基金项目:国家自然科学基金(61571117,61138001,61171024,61171026) 收稿日期:2016-09-15 *通讯联系人,E­mail:qiangcheng@seu.edu.cn

Broadband focusing acoustic lens based on fractal acoustic metamaterials

Song Gangyong1,Huang Bei1,Song Hai2,Cheng Qiang1*   

  • Online:2017-01-19 Published:2017-01-19
  • About author:1.State Key Laboratory of Millimeter Wave,Southeast University,Nanjing,210096,China;2.North Information Control Group Co.,Ltd,Nanjing,211106,China

摘要: 声学超材料,是一种用于操纵声波的人工声学结构,具有诸多自然界所不具备的超常物理性质.不同于早期的局域共振声学单元结构,基于希尔伯特分形曲线提出了一种具有低损耗、高折射率的分形声学超材料,给出了分形结构声学单元的进化过程,并运用等效媒质理论,提取了具有亚波长的分形超材料单元的相对折射率、相对阻抗、等效密度及等效模量等材料参数.由于分形结构具有的自相似性和空间折叠特性,所提出的分形超材料具有宽带工作频率响应,为众多应用场合比如声超分辨率成像及声隧穿效应器件提供了候选材料.为检验分形声学超材料特性,应用分形声学超材料设计了梯度折射率分布的声聚焦透镜,并由固体方块阵列仿真对比、实验测量、以及点声源入射等三种手段验证了分形声学超材料参数特性及其聚焦透镜在2~5 kHz宽频带内良好的聚焦能力.

Abstract: Acoustic metamaterials are artificial structures which can manipulate sound waves through their unconventional effective properties.Different from the locally resonant elements proposed in earlier studies,we utilize Hilbert fractal to realize acoustic metamaterials with both low loss and large refractive indices and explain how varying degrees of parameters expected can be engineered through the FAM(fractal acoustic metamaterials)design.To demonstrate the performance of the FAM elements,the effective acoustic parameters are calculated through a retrieval procedure based on commercial finite element analysis.Due to the self­similar properties of the proposed structure,broadband acoustic responses may arise within a broad frequency range,making it a good candidate for a number of applications,such as super­resolution imaging and acoustic tunneling.To validate the performance of the FAM,we design,fabricate,and measure a two­dimensional flat acoustic lens using FAM elements.The flat acoustic lens is simulated and experimentally verified,showing excellent focusing abilities from 2 kHz and 5 kHz in the measured results.As compared,we design a periodical array of square solid blocks by replacing the FAM elements in the same location y of each element in the lens.The every square solid block has the same size and material parameters as that of the respective FAM elements at the same position.For further validation,incident sound source is replaced by a point sound source,cylindrical wave front can be converted to plane wave front through the FAM flat lens.Our new strategy may offer an alternate route to the design of novel materials and devices in acoustic engineering in the future.

[1] Li J,Chan C T.Double­negative acoustic metamaterial.Physical Review E,2004,70,055602. [2] Cummer S A,Christensen J,Alù A.Controlling sound with acoustic metamaterials.Nature Reviews Materials,2016,1:7958-7965. [3] 陆慧颖,宋刚永,程 强.二维声学超材料透镜的设计与实验.南京大学学报(自然科学),2015,51(6):1114-1119.(Lu H Y,Song G Y,Cheng Q.Design and measurements of a two dimensional metamaterial.Journal of Nanjing University(Natural Sciences),2015,51(6):1114-1119. [4] Liu C,Xu X D,Wang J S,et al.Study on the band gap variation caused by constructed materials in a sandwich phononic crystal.Journal of Nanjing University(Natural Sciences),2012,48(5):531-536. [5] Fang N,Xi D,Xu J,et al.Ultrasonic metamaterials with negative modulus.Nature Materials,2006,5,452-456. [6] Ding Y Q,Liu Z Y,Qiu C Y,et al.Metamaterial with simultaneously negative bulk modulus and mass density.Physical Review Letters,2007,99:093904. [7] Lu M H,Zhang C,Feng L,et al.Negative birefraction of acoustic waves in a sonic crystal.Nature Materials,2007,6:744-748. [8] Liu F,Liu Z.Elastic waves scattering without conversion in metamaterials with simultaneous zero indices for longitudinal and transverse waves.Physical Review Letters,2015,115:175502. [9] García­Chocano V M,Christensen J,Sánchez­Dehesa J.Negative refraction and energy funneling by hyperbolic materials:An experimental demonstration in acoustics.Physical Review Letters,2014,112:144301. [10] Li J,Fok L,Yin X,et al.Experimental demonstration of an acoustic magnifying hyperlens.Nature Materials,2009,8:931-934. [11] Torrent D,Sánchez­Dehesa J.Acoustic cloaking in two dimensions:a feasible approach.New Journal of Physics,2008,10:063015. [12] Chen H,Chan C T.Acoustic cloaking and transformation acoustics.Journal of Physics D:Applied Physics,2010,43:113001. [13] Ma G,Yang M,Xiao S,et al.Acoustic metasurface with hybrid resonances.Nature Materials,2014,13:873-878. [14] Wang P,Casadei F,Shan S,et al.Harnessing buckling to design tunable locally resonant acoustic metamaterials.Physical Review Letters,2014,113:014301. [15] 欧阳溯源,孟 杨,景晓东.用于声学超材料的气球状软质共振单元研究.南京大学学报(自然科学),2015,51(S1):10-15.(Oyang S Y,Meng Y,Jing X D.Investigation of a balloon­like resonator for negative­bulk­modulus acoustic metataterial.Journal of Nanjing University(Natural Sciences),2015,51(S1):10-15. [16] Lee S,Park C,Seo Y,et al.Composite acoustic medium with simultaneously negative density and modulus.Physical Review Letters,2010,104:054301. [17] Liang Z,Li J.Extreme acoustic metamaterial by coiling up space.Physical Review Letters,2012,108:114301. [18] Xie Y,Popa B I,Zigoneanu L,et al.Measurement of a broadband negative index with space­coiling acoustic metamaterials.Physical Review Letters,2013,110:175501. [19] McVay J,Engheta N,Hoorfar A.Three­dimensional Hilbert space­filling­curve plasmonics.In:Antennas and propagation society International Symposium 2006.Washington D C USA:IEEE Computer Society Washington,2006,769-772. [20] Hou B,Xie H,Wen W,et al.Three­dimensional metallic fractals and their photonic crystal characteristics.Physical Review B,2008,77(12):125113. [21] Werner D H,Mittra R.Frontiers in electromagnetic.New Jersey:Piscataway IEEE Press,2000,96-200. [22] Vinoy K J,Jose K A,Varadan V K,et al.Hilbert curve fractal antenna:A small resonant antenna for VHF/UHF applications.Microwave and Optical Technology Letters,2001,29(4):215-219. [23] Fokin V,Ambati M,Sun C,et al.Method for retrieving effective properties of locally resonant acoustic metamaterials.Physical Review B,2007,76:144302. [24] Climente A,Torrent D,Sanchez­Dehesa J.Sound focusing by gradient index sonic lenses.Applied Physics Letters,2010,97:104103.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!