南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (3): 496–502.

• • 上一篇    下一篇

 地下河不同流量状态下溶质运移的参数及模拟

 郭 芳,姜光辉*,于 奭,林玉石   

  • 出版日期:2016-07-02 发布日期:2016-07-02
  • 作者简介:中国地质科学院岩溶地质研究所/国土资源部岩溶动力学重点实验室,桂林,541004;
    联合国教科文组织国际岩溶研究中心,桂林,541004
  • 基金资助:
     国家自然科学基金(41172231,41472239),广西自然科学基金(2013GXNSFDA019024),中国地质调查项目(1212011121166),中国地质科学院(YYWF201504)

 Parameters and modeling of solute transport under different flow conditions in subterranean river

 Guo Fang,Jiang Guanghui*,Yu Shi,Lin Yushi   

  • Online:2016-07-02 Published:2016-07-02
  • About author: Key Laboratory of Karst Dynamics,Institute of Karst Geology,Guilin,541004,China;
    The International Research Center on Karst under the Auspices of UNESCO,Guilin,541004,China

摘要:  在官村地下河流域一段长为750 m的管道进行了十一次弥散试验,以考察岩溶管道流的溶质运移行为.采用NaCl作为示踪剂,利用电导仪记录浓度的变化和流速仪测量管道流的流量.试验表明溶质的平均运移速度为1.3~5.8 cm?s-1,通过弥散试验求的管道平均截面面积在不同流量时差别不大,表明岩溶管道处于有压管流状态,并且雷诺数大于20000,据此判断管道流为紊流.弥散系数与溶质平均运移速度之间为近似线性关系.利用经典对流弥散方程以及由试验结果取得的参数模拟溶质的穿透曲线,发现模拟结果的溶质运移总比实际滞后,这种现象与模拟时管道形状的平均化处理无关,是用管道截面平均流速代替管道截面实际流速产生的.改用代表暂存区机理的溶质运移模型模拟试验结果,将管道水流截面分为主流区和不流动区,模拟结果与实际吻合,这解释了溶质平均运移时间提前和穿透曲线出现拖尾的原因.

Abstract:  Eleven tracer tests were conducted under different discharge conditions in a karst conduit in Guancun subterranean river.50 kg of NaCl was injected into a karst window in impulse manner every time.Specific electrical conductivity was auto­recorded,and discharge was measured with current meter.QTRACER2 was used to estimate parameters of conduit,flow and dispersion through breakthrough curves.The section value of conduit varies little among the tests,indicating the conduit is filled with water even in the lowest discharge.Reynolds numbers in all tests are bigger than 20000,which are exceeded the threshold value of turbulence flow.Dispersion coefficient is linear with the mean tracer velocity.The classic one dimension advection dispersion equation was used to simulate the breakthrough curves.The results show the modeling curves have bigger tracer transit time than the actual values,causing by the actual velocity of conduit section was replaced by the mean velocity,rather than resulting from variable conduit shape.To reduce this error,a transit storage model of OTIS was used to simulate and calculate parameters.The section of conduit was divided into main channel and storage zone.The OTIS model is successful for simulating these tests.

[1] Morales T,Uriarte J A,Olazar M,et al.Solute transport modeling in karst conduits with slow zones during different hydrologic conditions.Journal of Hydrology,2010,390:182-189.
[2] 姜光辉,郭 芳,林玉石等.岩溶管道流示踪试验的定量解析.水文地质工程地质,2008,增刊,384-387.(Jiang G H,Guo F,Lin Y S,et al.Quantitative analysis of tracer test in karst conduit flow.Hydrogeology and Engineering Geology,2008,supplementary issues:384-387.)
[3] 王开然,姜光辉,郭 芳等.桂林东区峰林平原岩溶地下水示踪试验与分析.现代地质,2013,27(2):454-459.(Wang K R,Jiang G H,Guo F,et al.Karst groundwater tracer test and analysis of peak forest plain area in Eastern Guilin.Geoscience,2013,27(2):452-457.)
[4] 王 伟,宋婉虹.利用示踪试验研究巨木地下河成库条件.地质学刊,2015,1:105-110.(Wang W,Song W H.Reservoir­forming conditions of the Jumu underground river by tracer tests.Journal of Geology,2015,1:105-110.)
[5] Grisey E,Belle E,Dat J,et al.Survival of pathogenic and indicator organisms in groundwater and landfill leachate through coupling bacterial enumeration with tracer tests.Desalination,2010,261(1-2):162-168.
[6] Hauns M,Jeannin P Y,Atteia O.Dispersion retardation and scale effect in tracer breakthrough curves in karst conduit.Journal of Hydrology,2001,241:177-193.
[7] Field M S,Leij F J.Solute transport in solution conduits exhibiting multi­peaked breakthrough curves.Journal of Hydrology,2012,440-441:26-35.
[8] Guo F,Jiang G H.Nitrogen budget of a typical subterranean river in peak cluster karst area.Environmental Geology,2009,58:1741-1748.

[9] 郭 芳,姜光辉,袁道先.南方岩溶区地下河主要离子浓度变化趋势分析.水资源保护,2008,1:19-30.(Guo F,Jiang G H,Yuan D X.Change of major ions concentration in subterranean river in karst areas in South China.Water Resources Protection,2008,1:19-30.)
[10] 郭 芳,陈坤琨,姜光辉.岩溶地下河沉积物对氨氮的等温吸附特征.环境科学,2011,32(2):501-507.(Guo F,Chen K K,Jiang G H.Characteristic of ammonia nitrogen adsorption on karst underground river sediments.Environ­mental Sciences,2011,32(2):501-507.)
[11] Guo F,Jiang G H,Yuan D X.Major ions in typical subterranean rivers and their anthro­pogenic impacts in southwest karst areas.China.Environmental Geology,2007,53(3):533-541.
[12] Field M S.The QTRACER2 program for tracer­breakthrough curve analysis for tracer tests in karstic aquifers and other hydrologic systems.US:EPA,2002.
[13] 成都科学技术大学水力学教研室编.水力学.北京:人民教育出版社,1979,143-144.(Hydraulics Teaching and Research Office.Chengdu University of Science and Technology(Eds.)Hydraulics.Beijing:People’s Education Press,1979,143-144.)
[14] 薛禹群主编.地下水动力学.北京:地质出版社,1997,174-178.(Xue Y Q.Groundwater dynamics.Beijing:Geological Publishing House,1997,174-178.)
[15] Runkel R L.One­dimensional transport with inflow and storage(OTIS):A solute transport model for streams and rivers.US Geological Survey,Water­Resources Investigations Report,1998,98-4018.
[16] Abderrezzak K E K,Ata R,Zaoui F.One­dimensional numerical modeling of solute transport in streams:The role of longitudinal dispersion coefficient.Journal of Hydrology,2015,527:978-989.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!