南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (1): 16–26.

• • 上一篇    下一篇

稳定同位素技术在环境水体氮的生物地球化学循环研究中的应用

李荣富1,2,罗跃辉 ,2,曾洪玉1,2,阮晓红1,2*,刘丛强3*   

  • 出版日期:2016-01-27 发布日期:2016-01-27
  • 作者简介:(1. 南京大学表生地球化学教育部重点实验室,南京,210046;2. 南京大学地球科学与工程学院水科学系,南京,210046)
  • 基金资助:
    ?基金项目:国家自然科学基金重点项目(41230640),国家水体污染控制与治理科技重大专项(2012ZX07204-003)
    收稿日期:2015-12-26
    *通讯联系人,E-mail:ruanxh@nju.edu.cn,liucongqiang@vip.skleg.cn

Application of stable isotopes on the biogeochemical cycle of nitrogen in environmental water

Li Rongfu1,2,Luo Yuehui1,2,Zeng Hongyu1,2,Ruan Xiaohong1,2* ,Liu Congqiang3*   

  • Online:2016-01-27 Published:2016-01-27
  • About author:(1.Department of Water Science,School of Earth Sciences and Engineering, Nanjing University,Nanjing,210023,China;2.MOE KeyLaboratory of Surficial Geochemistry, Nanjing University,Nanjing,210023,China;3.State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang,550002,China)

摘要: 氮的生物地球化学循环是地表环境中最复杂的物质循环之一。近年来,稳定同位素技术在氮的生物地球化学循环研究中得到了广泛应用,极大地丰富了人们对氮的来源、物理迁移及其生物地球化学循环等过程的认识,完善了氮的生物地球化学循环理论体系。本文综述了在环境水体中应用稳定同位素示踪技术及统计模型,对氮的溯源研究从定性识别到定量解析的拓展;应用稳定同位素分馏理论及同位素配对技术,对氮的生物地球化学循环转化途径的判别及其转化速率的定量解析;重点提出应进一步开展不同转化途径、不同水体环境要素对氮同位素分馏特征的影响研究,逐步完善环境水体氮循环同位素分馏理论体系。

Abstract: The nitrogen cycle is one of the most complicated biogeochemical cycles in the aqueous environment. Stable isotope techniques have been widely applied in the study of the biogeochemical cycle of nitrogen. These studies have greatly enriched our understanding of sources, migrations and biogeochemical cycles of nitrogen and completed the theoretical system of the biogeochemical cycle of nitrogen. Here, we review the research of nitrogen sources which has been extended from the qualitative identification to the quantitative apportionment based on stable isotope trace techniques and statistical methods, and the study of the biogeochemical cycle of nitrogen which has been extended from qualitative identification to the quantitative estimation of transformation processes according to the isotope fractionation in the nitrogen cycle and the isotope pairing technique. And we propose that the further study should be focused on the influence of variable nitrogen transformation processes and diverse environmental factors on isotope fractionation characters of nitrogen and theory of isotope fractionation of aqueous nitrogen should be gradually completed.

[1]Chen Y. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research, 2003, 25(4):445-453(9).
[2]Panno S V, Hackley K C, Hwang H H, et al. Determination of the sources of nitrate contamination in karst springs using isotopic and chemical indicators. Chemical Geology, 2001, 179(1): 113-128.
[3]Meckenstock R U, Morasch B, Griebler C, et al. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers.. Journal of Contaminant Hydrology, 2004, 75:215-255.
[4]Groffman P M, Altabet M A, B?hlke J K, et al. Methods for measuring denitrification: diverse approaches to a difficult problem. Ecological Applications, 2006, 16(6): 2091-2122.
[5]Kohl D H, Shearer G B, Commoner B. Fertilizer nitrogen: contribution to nitrate in surface water in a corn belt watershed. Science, 1972, 174(4016):1331-4.
[6]Xue D, Botte J, De Baets, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research ,2009,43 (5), 1159-1170.
[7]Amberger A, Schmidt H L Natural isotope contents of nitrate as indicators for its origin. Geochim. Cosmochim. Acta, 1987,51, 2699–2705.
[8]Maye B, S M Bollwerk, T Mansfeldt, et al.The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochim. Cosmochim. Acta,2001, 65:2743–2756.
[9]Kendall C,Euiott E M,Wankel S D.Tracing anthropogenic inputs of nitrogen to ecosystems.In: Michener R H,Lajtha K.Stable Isotopes in Ecology and Environmental Science.The 2nd Edition.Blackwell,Oxford,2008,375-449.
[10]Michalski G, Scott Z, Kabiling M, et al. First measurements and modeling of δ17O in atmospheric nitrate. Geophys Res Lett. 2003, 30 (16).
[11]Morin S, Savarino J, Bekki S, et al. Signature of Arctic surface ozone depletion events in the isotope anomaly (δ17O) of atmospheric nitrate. Atmospheric Chemistry & Physics, 2007, 7: 1451–1469.
[12]Tsunogai U, D Komatsu D, Daita S, et al. Tracing the fate of atmospheric nitrate deposited onto a forestecosystem in Eastern Asia using δ17O. Atmospheric Chemistry & Physics, 2010, 10: 1809–1820.
[13]Liu T, Wang F, Michalski G, et al. Using 15N, 17O, and 18O To Determine Nitrate Sources in the Yellow. Environmental science & technology. 2013, 47: 13412?13421.
[14]Ramesh R, Sarin M M. Stable isotope study of the Ganga (Ganges) river system. Journal of Hydrology, 1992, 139(1): 49-62.
[15]Bartarya S K, Bhattacharya S K, Ramesh R, et al. δ18O and δD systematics in the surficial waters of the Gaula river catchment area, Kumaun Himalaya, India. Journal of Hydrology, 1995, 167(1): 369-379.
[16]Garzione C N, Quade J, Decelles P G, et al. Erratum to “Predicting paleoelevation of Tibet and the Himalaya from δ18O versus altitude gradients in meteoric water across the Nepal Himalaya”. Earth & Planetary Science Letters, 2001, 185:397.
[17]Poage M A, Chamberlain C P. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. American Journal of Science, 2001, 301(1): 1-15.
[18]侯俊琳, 庄晓玲, 闫福贵等. 氢氧同位素在岩溶水成因分析中的应用——以乌海市千里山岩溶泉域为例. 西部资源, 2013, (3):84-86.(Hou J L, Zhuang X L, Yan F J, et al. The application of oxygen and hydrogen isotope in the origin of karst water: a case study of karst spring in Qianlishan, Wuhai. Western Resources, 2013, (3):84-86.)
[19]于津生, 张鸿斌, 虞福基等. 西藏东部大气降水氧同位素组成特征. 地球化学, 1980, (2):113-121. (Yu J S, Zhang H B, Yu F J, et al. Oxygen isotopic composition of meteoric water in the eastern part of Xizang. Geochimica, 1980, (2):113-121.)
[20]黄平华, 陈建生, 宁超. 焦作矿区地下水中氢氧同位素分析. 煤炭学报, 2012, 37(5):770-775. (Huang P H, Chen J S, Ning C. The analysis of hydrogen and oxygen isotopes in the ground water of Jiaozuo mine aera. Journal of China Coal Society, 2012, 37(5):770-775.)
[21]宋献方, 刘相超, 夏军等. 基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究. 中国科学, 2007, 37(1):102-110. (Song X F, Liu X C, Xia J, et al. The research of the transformation relation between surface water and groundwater in Huaisha River basin based on the environmental isotope technique. Science in China, 2007, 37(1):102-110.)
[22]Rogers K M, Nicolini E, Gauthier V. Identifying source and formation altitudes of nitrates in drinking water from Réunion Island, France, using a multi-isotopic approach. Journal of Contaminant Hydrology, 2012, 138-139:93–103.
[23]Phillips D L, Koch P L. Incorporating Concentration Dependence In Stable Isotope Mixing Models. Oecologia, 2002, 130(1):114-125.
[24]Deutsch B, Mewes M, Liskow I, et al. Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate. Organic geochemistry, 2006, 37(10): 1333-1342.
[25]Parnell A C, Inger R, Bearhop S, et al. Source partitioning using stable isotopes: coping with too much variation. PloS one, 2010, 5(3). DOI:10.1371/journal.pone.0009672
[26]Yang L, Han J, Xue J, et al. Nitrate source apportionment in a subtropical watershed using Bayesian model. Science of the Total Environment, 2013, 463-464c(5):340-347.
[27]Ding J, Xi B, Gao R, et al. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach. Science of the Total Environment, 2014, 484c(24):10–18.
[28]Xue D, Baets B D, Cleemput O V, et al. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water. Environmental Pollution, 2012, 161(1):43–49.
[29]Marion T, Emily M, Daniel J, et al. Quantification of Nitrate Sources to an Urban Stream Using Dual Nitrate Isotopes. Environmental science & technology,2014, 48: 10580?10587.
[30]Ralph L. Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater. Applied Geochemistry. 2005, 20: 1626–1636.
[31]Li S L, Liu C Q, Li J, et al. Assessment of the sources of nitrate in the Changjiang River, China using a nitrogen and oxygen isotopic approach. Environmental science & technology, 2010, 44(5): 1573-1578.
[32]Samantara M K, Padhi, et al. Groundwater nitrate contamination and use of Cl/Br ratio for source appointment. Environmental monitoring and assessment, 2015, 187(2): 1-13.
[33]Fenech C, Rock L, Nolan K, et al. The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: a review. Water research, 2012, 46(7): 2023-2041.
[34]Iqbal M Z, Krothe N C, Spalding R F. Nitrogen isotope indicators of seasonal source variability to groundwater. Environmental Geology, 1997, 32(3):210-218.
[35]丁京涛, 席北斗, 许其功等. 稳定同位素技术在地表水硝酸盐污染研究中的应用. 湖泊科学, 2013, 25(5):617-627. (Ding J T, Xi B D, Xu Q G, et al. Application of stable isotope on nitrate pollution researches in surface water. Journal of Lake Science, 2013, 25(5):617-627.)
[36]刘丛强.生物地球化学过程与地表物质循环:西南喀斯特土壤-植被系统生源要素循环.科学出版社,2009,568-618.
[37]Bottcher J, O Strebel, S Voerkelius, et al. Using isotope fractionation of nitrate nitrogen and nitrate oxygen for evaluation of denitrification in a sandy aquifer. Journal of Hydrology, (Amsterdam) 1990,114:413–424.
[38]Hosono T, Tokunaga T, Kagabu M, et al. The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution.Water Research, 2013, 47(8):2661–2675.
[39]Panno S V, Hackley K C, Kelly W R, et al. Isotopic evidence of nitrate sources and denitrification in the Mississippi River, Illinois. Journal of environmental quality, 2006, 35(2): 495-504.
[40]Granger J,Sigman D M,Lehmann M F,etal.Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria.Limnology and Oceanography,2008,53(6):2533-2545.
[41]RivettM O,Buss S R,Morgan P,etal.Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research,2008,42:4215-32.
[42]Hosono T,Tokunaga T,Tsushima A,etal.Combined use ofδ13C,δ15N,andδ34S tracers to study anaerobic bacterial processes in groundwater flow systems.Water Research,2014,54:284-296.
[43]Waser N A D, Harrison P J, Nielsen B, et al. Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom. Limnology & Oceanography, 1998, 43(2):215-224.
[44]Sun Z, Mou X, Li X, et al. Application of stable isotope techniques in studies of carbon and nitrogen biogeochemical cycles of ecosystem. Chinese Geographical Science, 2011, 21(2):129-148.
[45]Nielsen L P. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiology Letters, 1992, 86(4): 357-362.
[46]Casciotti K L, Sigman D M, Hastings M G, et al. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, Analytical Chemistry, 2002, 74(19):4905-4912.
[47]Giblin A E, Weston N B, Banta G T, et al. The effects of salinity on nitrogen losses from an oligohaline estuarine sediment. Estuaries and Coasts, 2010, 33(5): 1054-1068.
[48]Steingruber S M, Friedrich J, G?chter R, et al. Measurement of denitrification in sediments with the 15N isotope pairing technique. Applied and Environmental Microbiology, 2001, 67(9): 3771-3778.
[49]Strous M, Kuenen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation. Applied and environmental microbiology, 1999, 65(7): 3248-3250.
[50]Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and environmental microbiology, 2002, 68(3): 1312-1318.
[51]Trimmer M, Risgaard Petersen N, Nicholls J C, et al. Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores. Marine Ecology Progress Series, 2006, 326: 37-47.
[52]Risgaard Petersen N, Nielsen L P, Rysgaard S, et al. Application of the isotope pairing technique in sediments where anammox and denitrification coexist. Limnology and Oceanography: Methods, 2003, 1(1): 63-73.
[53]罗绪强, 王世杰, 刘秀明. 稳定氮同位素在环境污染示踪中的应用进展. 矿物岩石地球化学通报, 2007, 26(3):295-299. (Luo X Q, Wang S J, Liu X M. Advances in the research on stable nitrogen isotope for tracing environmental pollutions. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(3):295-299.)
[54]Harvey J W, B?hlke J K, Voytek M A, et al. Hyporheic zone denitrification: Controls on effective reaction depth and contribution to whole‐stream mass balance. Water Resources Research, 2013, 49(10): 6298-6316.
[55]Smith R L, B?hlke J K, Song B, et al. Role of anaerobic ammonium oxidation (anammox) in nitrogen removal from a freshwater aquifer. Environmental science & technology, 2015, 49(20):12169-12177.
[56]Burgin A J, Hamilton S K, Gardner W S, et al. Nitrate reduction, denitrification, and dissimilatory nitrate reduction to ammonium in wetland sediments. Methods in Biogeochemistry of Wetlands, 2013 ,519-537.
[57]Koop Jakobsen K, Giblin A E. New approach for measuring denitrification in the rhizosphere of vegetated marsh sediments. Limnology and Oceanography: Methods, 2009, 7(9): 626-637.
[58]Addy K, Kellogg D Q, Gold A J, et al. In situ push–pull method to determine ground water denitrification in riparian zones. Journal of Environmental Quality, 2002, 31(3): 1017-1024.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邱 浩,王欣然*. 二硫化钼的电子输运与器件[J]. 南京大学学报(自然科学版), 2014, 50(3): 280 .
[2] 王学锋1,2*,徐永兵1,2*,张 荣1,2. 低维磁性耦合体系的新物性及电/光场调控进展[J]. 南京大学学报(自然科学版), 2014, 50(3): 309 .
[3] 骆乾坤*,吴剑锋2,杨运3,钱家忠1. 渗透系数空间变异程度对进化算法优化结果影响评价[J]. 南京大学学报(自然科学版), 2015, 51(1): 60 -66 .
[4] 孙大军1,2, 王永恒1,2*, 勇俊1,2. 实频数据技术在水声换能器宽带匹配中的应用[J]. 南京大学学报(自然科学版), 2015, 51(6): 1182 -1188 .
[5] 杨政予1,王新龙1
. 茅山军号声现象的进一步研究[J]. 南京大学学报(自然科学版), 2015, 51(6): 1097 -1106 .
[6] 张亚平,2,万宇1,2,聂青3,阮晓红1,2*,王子健4. 湖泊水体中氮的生物地球化学过程及其生态学意义[J]. 南京大学学报(自然科学版), 2016, 52(1): 5 -15 .
[7] 李 婷1,张超智1,2*,沈 丹1,袁 阳1. 石墨烯和氧化石墨烯的生物体毒性研究进展[J]. 南京大学学报(自然科学版), 2016, 52(2): 235 .
[8] 涂 臻*,卢 晶 . 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究[J]. 南京大学学报(自然科学版), 2016, 52(2): 382 .
[9] 葛 勇1,孙宏祥1,2*,袁寿其1,夏建平1,管义钧1 . 含对称三角形腔的波导管中宽带低频隔声效应[J]. 南京大学学报(自然科学版), 2016, 52(4): 619 .
[10] 季 阳,单 丹,钱明庆,李 伟,徐 骏*,陈坤基. 镶嵌于非晶碳化硅中的高导电性掺杂纳米晶硅的制备与电学性能研究[J]. 南京大学学报(自然科学版), 2016, 52(5): 780 .