Zhao Zhenhua1,2*, Cao Jingjing1,2, Liu Yueli1,2 " /> 秦淮河沉积物中营养盐及相关酶活性时空变异特征及其响应关系研究

南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (1): 36–45.

• • 上一篇    下一篇

秦淮河沉积物中营养盐及相关酶活性时空变异特征及其响应关系研究

赵振华1,2*,曹晶晶1,2, 刘月利1,2   

  • 出版日期:2016-01-27 发布日期:2016-01-27
  • 作者简介:(1.河海大学浅水湖泊综合治理与资源开发教育部重点实验室,南京 2100982.河海大学环境学院, 南京 210098)
  • 基金资助:
    基金项目:国家自然科学基金重点基金(41230640),国家自然科学基金(41371307)
    收稿日期:2015-11-23
    *通讯联系人,E-mail:zzh4000@126.com

Temporal and spatial variability and their response relationship of nutrients and relevant enzymatic activities in the sediments of Qinhuai River

Zhao Zhenhua1,2*, Cao Jingjing1,2, Liu Yueli1,2   

  • Online:2016-01-27 Published:2016-01-27
  • About author:(1.Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098,China; 2. College of Environment, Hohai University, Nanjing 210098, China)

摘要:

本文以南京市典型城市景观河道——秦淮河主城区段为研究对象,通过对主城区段内外秦淮河20个典型点位沉积物秋冬2个批次的采样及分析,研究了沉积物中脲酶、磷酸酶和荧光素水解酶及氮磷营养盐的时空变异特征及其响应关系。结果表明,研究区域河道沉积物中的营养盐及相应酶活性的时空变异均较为显著。氮、磷及有机质含量大多数都超过了丰富标准值,是典型的低碳高氮水体;碱性磷酸酶和荧光素水解酶的时空变异性较为一致,均为冬季高于秋季,而脲酶则正好相反。聚类、主成分、典型相关分析(CCA)及相关性分析表明,荧光素(简写为FDA)水解酶与磷酸酶和全磷的时空变异特征比较一致,呈显著正相关关系(p<0.05),由于FDA水解酶可以代表微生物的总体活性,因此,研究区域沉积物中磷酸酶的来源很可能主要来自微生物。其次,FDA水解酶又与氮营养盐均显著负相关(p<0.05),且与脲酶弱负相关,说明脲酶可能并不主要来自微生物,且沉积物中总微生物的高活性,有利于水体中氮污染物的削减。



Abstract: This paper focus on the typical urban landscape rivers - Qinhuai River in Nanjing downtown, the sediments of 20 typical sites in internal and external Qinhuai River were monitored by two batches of samples analysis of sediments in autumn and winter. Temporal and spatial variability and their response relationship of urease, alkaline phosphatase, fluoresceindiacetate (FDA) hydrolase and environmental indexes including nitrogen and phosphorus nutrients in the sediments were studied. Results showed that the temporal and spatial variability of nutrients and related enzyme activities in the sediment in the corresponding area are significant. Most of nitrogen, phosphorus and organic matter content exceeded the standard values of rich level, and Qinhuai River is a typical water body with low-carbon and high- nitrogen. Temporal and spatial variability of alkaline phosphatase was consistent with fluoresceindiacetate hydrolase, both of their enzyme activities in winter are more than those in autumn, while the urease was just the opposite. The analysis of clustering, principal component, canonical correlation and correlation analysis showed that the temporal and spatial variation of FDA hydrolase, phosphatase and total phosphorus showed a significant positive correlation (p <0.05). Since the FDA hydrolase activity can be representative of the activity of total microorganisms, therefore, the source of phosphatase in the sediments of study area may be mainly derived from microorganisms. Secondly, FDA hydrolase significantly negatively correlated with nitrogen nutrients (p <0.05), and weakly negatively correlated with urease, indicating that the main sources for urease may be not from microorganisms, and the high activity of microorganisms in sediment may be beneficial to reduction of nitrogen pollutants.

[1]郭亚新.浅水湖泊沉积物中若干氧化还原酶活性的分布及其生态学意义.中国科学院研究生院(水生生物研究所): 中国科学院研究生院(水生生物研究所), 2006.
[2]Burns R G, DeForest J L, Marxsen J, et al. Soil enzyme research: current knowledge and future directions. Soil Biology and Biochemistry, 2013, 58: 216-234.
[3]B?ońska E. Enzyme activity in forest peat soils. 2010.
[4]Stark S, Männistö M K, Eskelinen A. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant and Soil, 2014, 383(1-2): 373-385.
[5]Sinsabaugh R L, Hill B H, Shah J J F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462(7274): 795-798.
[6]Bianchelli S, Gambi C, Zeppilli D, et al. Metazoan meiofauna in deep-sea canyons and adjacent open slopes: A large-scale comparison with focus on the rare taxa. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(3): 420-433..
[7]Hakulinen R, Kähkönen M A, Salkinoja-Salonen M. Vertical distribution of sediment enzyme activities involved in the cycling of carbon, nitrogen, phosphorus and sulphur in three boreal rural lakes. Water Research, 2005, 39(11): 2319-2326.
[8]Wright A L, Reddy K R, Corstanje R. Patterns of heterotrophic microbial activity in eutrophic and oligotrophic peatlands. european journal of soil biology, 2009, 45(2): 131-137.
[9]Serrano l, Matouschek A, Fersht A R. The folding of an enzyme: III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. Journal of Molecular Biology, 1992, 224(3): 805-818.
[10]Freeman S, Ross K C. Prodrug design for phosphates and phosphonates. Progress in medicinal chemistry, 1997, 34: 111-147.
[11]梁威. 复合垂直流构建湿地净化机理研究—微生物和酶.中国科学院水生生物研究所,2002.
[12]梁威,周巧红,成水平等. 构建湿地基质微生物与净化效果及相关分析.中国环境科学,2002,22(3):282-285
[13]吴振斌. 人工湿地系统对污水磷的净化效果.水生生物学报,2001,25(1):28-35.
[14]Mieczan T, Adamczuk M, Pawlik-Skowronska B, et al. Eutrophication of peatbogs: consequences of P and N enrichment for microbial and metazoan communities in mesocosm experiments[J]. AQUATIC MICROBIAL ECOLOGY, 2015, 74(2): 121-141.
[15]王佳佳,周桦,张进,范世华. 土壤样品中微生物活性的荧光分析方法, 环境化学, 2012, 31(10): 1637-1644
[16]土壤农业化学分析方法. 中国农业科技出版社, 2000.
[17]林海涛. 太湖梅梁湾和胥口湾多环芳烃、有机氯农药和多溴联苯醚的沉积记录研究. 广州: 中国科学院广州地球化学研究所, 2007.
[18]关松荫.土壤酶及其研究方法:北京:农业出版社,1986.
[19]李振高,骆永明,滕应.土壤与环境微生物研究法:北京:科学出版社,2008.
[20]宋炜, 袁丽娜, 肖琳, 等. 太湖沉积物中解磷细菌分布及其与碱性磷酸酶活性的关系. 环境科学, 2007, 28(10): 2355-2360.
[21]孙善峰, 桂智凡, 张盛周. 太湖表层沉积物中三种水解酶的时空变化特征研究. 北方环境, 2012 (4): 111-117.
[22]李兆华,李瑞勤.长湖水污染防治研究.武汉:科学出版社,2009.
[23]刘久根.南京外秦淮河水污染控制对策.现代城市研究,2003,18(5):51-53
[24]Singh R P, Varshney G, Srivastava G. Effect of carbofuran on enzymatic activities and growth of tomato plants in natural, fertilized and vermicompost-amended soils. Archives of Agronomy and Soil Science, 2012, 58(12): 1349-1364.
[25]Schumacher T E, Eynard A, Chintala R. Rapid cost-effective analysis of microbial activity in soils using modified fluorescein diacetate method. Environmental Science and Pollution Research, 2015, 22(6): 4759-4762.
[26]Shin Y J, Kwak J I, An Y J. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere, 2012, 88(4): 524-529.
[27]Aon M A, Colaneri A C. II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Applied Soil Ecology, 2001, 18(3): 255-270.
[28]蒋炳伸, 李鸿雁, 杨喜田. 应用荧光素二乙酸脂水解酶活性研究不同绿地土壤微生物活性. 河南农业科学, 2011, 40(8): 130-133.
[29]Angers B, Magnan P, Plante M, et al. Canonical correspondence analysis for estimating spatial and environmental effects on microsatellite gene diversity in brook charr (Salvelinus fontinalis). Mol Ecol, 1999, 8 (6): 1043-1053.


No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!