南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (6): 1153–1159.

• • 上一篇    下一篇

圆柱形切向极化复合压电超声换能器

贾龙洋,张光斌*,师庭庭,乔玉配,褚新宇   

  • 出版日期:2015-11-09 发布日期:2015-11-09
  • 作者简介:(陕西师范大学,物理学与信息技术学院,陕西省超声学重点实验室, 西安 710119)
  • 基金资助:
    陕西省超声学重点实验室项目资助(2014SZS17-Z02)

The cylindrical composite piezoelectric ceramic transducer polarized in tangential direction

 Jia Longyang ,Zhang Guangbin* ,Shi Tingting,Qiao Yupei ,Chu Xinyu   

  • Online:2015-11-09 Published:2015-11-09
  • About author:(College of Physics and Information Technology, Shaanxi Normal University, State Key Laboratory of Shaanxi Province, Xian 710119,China)

摘要: 本文设计了一种圆柱形切向极化复合压电超声换能器,这种复合换能器由金属薄壁圆管和切向极化压电陶瓷圆管组成。根据金属薄壁圆管径向振动的等效电路以及切向极化压电陶瓷圆管径向振动的等效电路,推导了该复合换能器的等效电路图,根据等效电路给出了换能器的谐振频率和反谐振频率的计算公式。并应用有限元数值分析方法,建立复合换能器的有限元模型,分析了复合换能器的振动模态和最优结构参数。并根据数值分析结果,设计和制作了圆柱形切向极化复合压电超声换能器,运用阻抗分析仪对换能器的阻抗特性进行了实验测试。分别由三种方法得到了圆柱形切向极化复合压电超声换能器的导纳与频率关系曲线,谐振频率及反谐振频率。经过比较三种方法的结果,等效电路方法得出的谐振频率和反谐振频率与有限元仿真结果和实验结果一致。

Abstract: In this paper, The cylindrical composite piezoelectric ceramic transducer polarized in tangential direction is presented and studied. The cylindrical composite piezoelectric ceramic transducer consists of an inner tangential polarized piezoelectric ceramic thin-walled circular tube and an outer metal thin-walled cylindrical shell which are composed in the radial direction. The radial vibrations of a metal thin-walled cylindrical shell and a piezoelectric ceramic thin-walled circular tube are analyzed. And their radial electro-mechanical equivalent circuits are obtained. Based on the equivalent circuits and the radial boundary conditions, the composite electro-mechanical equivalent circuit of the cylindrical composite piezoelectric ceramic transducer polarized in tangential direction is deduced, and the resonance and anti-resonance frequency equations of the transducer are derived. Using Finite Element Method (FEM), Finite element model of composite transducer is established, The vibration model and the optimum configuration parameters of the transducer are analyzed. Then on the basis of the Finite Element Method calculated?results, the prototype transducer polarized in tangential direction is designed and manufactured, and the impedance characteristics is measured by the Impedance Analyzer. The admittance and frequency curve , the resonance frequency and the?anti-resonance frequency of the cylindrical composite piezoelectric ceramic transducer polarized in tangential direction are obtained by each method. By?contrast, the resonance frequencies and the anti-resonance frequencies from the experimental results are in agreement with those from the frequency equations and Finite Element Method calculated results

[1] Irinela C. Underwater flextensional piezoceramic sandwich transducer. Sensors and Actuators A: Physical, 2002, 100(2-3): 287-292.
[2] Chacón D, Rodríguez-Corral G, Gaete-Garretón L, et al. A procedure for the efficient selection of?piezoelectric?ceramics constituting?high-power?ultrasonic?transducers. Ultrasonics, 2006, 44: 517-521.
[3] Gallego-Juárez J A, Rodriguez G, Acosta V, et al. Power ultrasonic transducers with extensive radiators for industrial processing. Ultrasonics Sonochemistry, 2010, 17(6): 953-964.
[4] Minchenko H. High-power Piezoelectric transducer design, IEEE Transactions on Sonics and Ultrasonics, 1969, 16 (3): 126-136.
[5] Dubus B, Debus J C, Decarpigny J N, et al. Analysis of mechanical limitations of high power piezo-electric transducers using finite element modeling. Ultrasonics, 1991, 29(3): 201-207.
[6] 许龙, 林书玉. 一种新型棒管式大功率聚焦超声辐射器. 南京大学学报(自然科学), 2012, 48(5): 544-552.
[7] 张小丽, 林书玉, 付志强等. 柱形压电超声换能器的耦合振动和声场分析. 南京大学学报(自然科学), 2012, 48(5): 537-543.
[8] Lin S Y. Design of piezoelectric sandwich ultrasonic transducer with largecross-section. Applied Acoustics, 1995, 44(3): 249-257.
[9] Xu L, Liu S Q, Xu P, et al. The vibrational properties of the high power ultrasonic focused radiator with rodlike and tubular structures in a composite vibration. Applied Acoustics, 2015, 87: 72-82.
[10] Karl F. Apparatus for generating and radiating ultrasonic energy, United States Patent, No.4537511. 1985-08-27.
[11] Liang Z F, Vibration analysis and sound field characteristics of a tubular ultrasonic radiator. Ultrasonics , 2006, 45: 146-151.
[12] Liu S Q, Lin S Y. The analysis of the electro-mechanical model of the cylindricalradial composite piezoelectric ceramic transducer. Sensors and Actuators A: Physical, 2009, 155: 175-180.
[13] 王琪山. 螺栓紧固型纵振换能器设计考虑. 应用声学, 1998(4): 27-32.
[14] 荣德新. 纵向换能器的预应力控制. 应用声学, 1983, 2(1): 30-32.
[15] 王清池. 纵向压电换能器预应力的控制. 海洋技术, 1996, 15(3): 22-26.
[16] Huang Y T, Chen C J, Sung H M, et al. The study of magnetic circuit design for multilayer ferrit chip inductors. IEEE Transactions on Magnetics. 1995, 31(6): 4071-4073.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!