南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (6): 1279–1290.

• • 上一篇    

分形入渗下非饱和-饱和系统中水流的时空变化

杨晨1,2,张幼宽1,梁修雨1,2   

  • 出版日期:2015-11-14 发布日期:2015-11-14
  • 作者简介:(1. 南京大学水科学研究中心,江苏南京 210093; 2. 南京大学地球科学与工程学院,江苏 南京 210023)
  • 基金资助:
    基金项目:国家自然科学基金(41272260,41330314,41302180),江苏省自然科学基金(SBK201341336)
    收稿日期:2015-06-09
    *通讯联系人,E-mail:xyliang@nju.edu.cn

The temporospatial variations of water flow in an unsaturated-saturated

Chen Yang1,2, You-Kuan Zhang1, Xiuyu Liang1,2*   

  • Online:2015-11-14 Published:2015-11-14
  • About author:(1. Center for Hydrosciences Research, Nanjing University, Nanjing 210093, China; 2. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China)

摘要: 通过分析非饱和-饱和系统(USS)中压力水头的时空变化,定量刻画了USS对水流波动的阻尼作用及地表入渗的时间尺度性指数(β)对该作用的影响。结果显示,USS对其中的水流具有阻尼/滤波作用,过滤掉水流的短期波动,使其波动减弱、短期相关性增强;阻尼作用随深度增加逐渐减弱,可能与土壤含水率有关;阻尼作用随入渗序列β值的增大而减弱;分数高斯噪声入渗引起的水头波动起初为非平稳波动最终为平稳波动,β越大,非平稳阶段越长;分数布朗运动入渗引起的水头波动为非平稳波动,β越大,非平稳性越强;入渗的时间分形性是引起地下水位分形波动的重要因素。

Abstract: The damping effect of an unsaturated-saturated system (USS) on the fluctuations of water flow and the effect of the scaling exponent of infiltration (β) on the damping effect were investigated. The moment equations of the pressure head (ψ) were solved numerically to obtain the variance of ψ at 7 observation points. Power spectrum of ψ (Sψψ) were estimated by directly solving the equations of the unsaturated-saturated system. Results show that USS filters out the short-term fluctuations of ψ, so the fluctuations of ψ are weakened and the short-term correlation increases. The damping effect decreases with depth and should be soil moisture dependent. The damping effect decreases with the increase of the value of β. The fluctuations of ψ are first non-stationary and finally stationary under the infiltration of fractional Gaussian noise and the larger the value of β, the longer the non-stationary period. The fluctuations of ψ are non-stationary all the time under the infiltration of fractional Brownian motion and the larger the value of β, the stronger the non-stationarity. The temporal scaling is an important factor inducing the scaling of temporal fluctuations of groundwater levels.

[1].Hurst H E. A Suggested Statistical Model of some Time Series which occur in Nature. Nature, 1957, 180: 494.
[2].Tessier Y, Lovejoy S, Hubert P, et al. Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J Geophys Res-Atmos,1996, 101: 26427-26440.
[3].Pandey G, Lovejoy S, Schertzer D. Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometres, one day to 75 years. J Hydrol,1998, 208: 62-81.
[4].Matsoukas C, Islam S, Rodriguez-Iturbe I. Detrended fluctuation analysis of rainfall and streamflow time series. J Geophys Res-Atmos,2000, 105: 29165-29172.
[5].Bl?schl G. Scaling in hydrology. Hydrol Process,2001, 15: 709-711.
[6].Zhang Y K, Schilling K. Temporal scaling of hydraulic head and river base flow and its implication for groundwater recharge. Water Resour Res, 2004, 40.
[7].Zhang Y K, Li Z W. Temporal scaling of hydraulic head fluctuations: Nonstationary spectral analyses and numerical simulations. Water Resour Res,2005, 41.
[8].Kantelhardt J W, Koscielny-Bunde E, Rybski D, et al. Long-term persistence and multifractality of precipitation and river runoff records. J Geophys Res-Atmos, 2006, 111.
[9].Wang A H, Zeng X B, Shen S S P, et al. Time scales of land surface hydrology. J ???Hydrometeorol,2006, 7: 868-879.
[10].Zhang Y K, Li Z W. Effect of temporally correlated recharge on fluctuations of groundwater levels. Water Resour Res???,2006, 42.
[11].Katul G G, Porporato A, Daly E, et al. On the spectrum of soil moisture from hourly to interannual scales. Water Resour Res, 2007, 43.
[12].Li Z W, Zhang Y K. Quantifying fractal dynamics of groundwater systems with detrended fluctuation analysis. J Hydrol,2007, 336: 139-146.
[13].Guan K, Thompson S E, Harman C J, et al. Spatiotemporal scaling of hydrological and agrochemical export dynamics in a tile-drained Midwestern watershed. Water Resour Res,2011, 47.
[14].Ozger M, Mishra A K, Singh V P. Seasonal and spatial variations in the scaling and correlation structure of streamflow data. Hydrol Process,2013, 27: 1681-1690.
[15].Yang G X, Bowling L C. Detection of changes in hydrologic system memory associated with urbanization in the Great Lakes region. Water Resour Res,2014, 50: 3750-3763.
[16].Little M A, Bloomfield J P. Robust evidence for random fractal scaling of groundwater levels in unconfined aquifers. J Hydrol,2010, 393: 362-369.
[17].Rakhshandehroo G R, Amiri S M. Evaluating fractal behavior in groundwater level fluctuations time series. J Hydrol,2012, 464: 550-556.
[18].Amenu G G, Kumar P, Liang X Z. Interannual variability of deep-layer hydrologic memory and mechanisms of its influence on surface energy fluxes. J Climate, 2005, 18: 5024-5045.
[19].Delworth T L, Manabe S. The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate. J Climate, 1988, 1.
[20].Entin J K, Robock A, Vinnikov K Y, et al. Temporal and spatial scales of observed soil moisture variations in the extratropics. J Geophys Res-Atmos, 2000, 105: 11865-11877.
[21].Parent A C, Anctil F, Parent L E. Characterization of temporal variability in near-surface soil moisture at scales from 1 h to 2 weeks. J Hydrol, 2006, 325: 56-66..
[22].Suping N, Yong L, Jiang Z. Trends and scales of observed soil moisture variations in China. Adv Atmos Sci, 2008, 25: 43-58.
[23].Vinnikov K Y, Robock A, Speranskaya N A, et al. Scales of temporal and spatial variability of midlatitude soil moisture. J Geophys Res-Atmos, 1996, 101: 7163-7174.
[24].Wu W R, Dickinson R E. Time scales of layered soil moisture memory in the context of land-atmosphere interaction. J Climate, 2004, 17: 2752-2764..
[25].Wu W R, Geller M A, Dickinson R E. The response of soil moisture to long-term variability of precipitation. J Hydrometeorol, 2002, 3: 604-613.
[26].Liang X Y, Zhang Y K. Temporal and spatial variation and scaling of groundwater levels in a bounded unconfined aquifer. J Hydrol, 2013, 479: 139-145.
[27].Liang X Y, Zhang Y K, Schilling K. Effect of heterogeneity on spatiotemporal variations of groundwater level in a bounded unconfined aquifer. Stoch Environ Res Risk Assess, 2014, online.
[28].Schilling KE, Zhang YK. Temporal Scaling of Groundwater Level Fluctuations Near a Stream. Ground Water, 2012, 50: 59-67.
[29].Zhang D X, Lu Z M. Stochastic analysis of flow in a heterogeneous unsaturated-saturated system. Water Resour Res,2002, 38.
[30].Mandelbrot B B, Van Ness J W. Fractional Brownian motions, Fractional noises and applications. SIAM Review, 1968, 10 (4): 422-437.
[31].Eke A, Hermán P, Bassingthwaighte J B, et al. Physiological time series: distinguishing fractal noises from motions. Pflügers Arch-Eur J Physiol, 2000, 439: 403-415.
[32].Malamud B D, Turcotte D L. Self-affine time series: measure of weak and persistence. Jouranal of Statistical Planning and Inference, 1999, 80:173-196.
[33].Turcotte L D. Fractal and chaos in geology and geophysics. New York: Cambridge University Press, 1992, 76.
[34].Feder J. Fractals (Physics of solids and liquids). New York: Plenum Press, 1988.
[35].Eke A, Herman P, Kocsis L, et al. Fractal characterization of complexity in temporal physiological signals. Physiol Meas, 2002, 23: R1-R38.
[36].Kroese D P, Botev, Z I. Spatial Process Generation. In: V. Schmidt (Ed.). Lectures on Stochastic Geometry, Spatial Statistics and Random Fields, Volume II: Analysis, Modeling and Simulation of Complex Structures, Springer-Verlag, Berlin, 2014.
[37].Zhang D X. Numerical solutions to statistical moment equations of groundwater flow in nonstationary, bounded, heterogeneous media. Water Resour Res,1998, 34: 529-538.
[38].Zhang D X. Nonstationary stochastic analysis of transient unsaturated flow in randomly heterogeneous media. Water Resour Res,1999, 35: 1127-1141.
[39].Zhang D X, Winter C L. Nonstationary stochastic analysis of steady state flow through variably saturated, heterogeneous media. Water Resour Res,1998, 34: 1091-1100.
[40].基金项目:国家自然科学基金(41272260,41330314,41302180),江苏省自然科学基金(201341336)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!