南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (4): 700–706.

• • 上一篇    下一篇

咪唑类离子液体吸收低压苯蒸汽的热力学研究

李长浩1,巫先坤2,王志祥1*,张 锋2*,张志炳2   

  • 出版日期:2015-07-07 发布日期:2015-07-07
  • 作者简介:(1. 中国药科大学工学院,南京,210009;2. 南京大学化学化工学院,南京210093)
  • 基金资助:
    基金项目:国家自然科学基金(21306078)

Thermodynamic Study on absorption of low-pressure benzene vapor in imidazolium-based ionic liquids

Li Changhao1, Wu Xiankun2, Wang Zhixiang1,*, Zhang Feng2,*, Zhang Zhibing2   

  • Online:2015-07-07 Published:2015-07-07
  • About author:(1. School of Engineering, China Pharmaceutical University, Nanjing, 210009, China; 2. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China)

摘要: 在303.2 ~ 333.2 K范围内,首先考察了低压苯蒸汽在5种咪唑离子液体中的溶解性能。然后采用NRTL活度系数模型关联二元体系的等温汽液平衡,关联误差在2%以内。最后,基于关联数据,获得了苯蒸汽在离子液体中的无限稀释活度系数和亨利系数,评价了体系的热力学变化:吸收焓、吸收熵与偏摩尔过量焓。结果表明,亨利系数随温度增大而增大,离子液体吸收苯蒸汽属于物理吸收。相同阳离子,当阴离子由[BF-4]、[PF-6]变为[Tf2N-],无限稀释活度系数逐渐降低,混合溶液由正偏差溶液变为负偏差溶液,溶解度增大;阴离子相同时,延长阳离子烷基侧链长度,可降低无限稀释活度系数。热力学分析表明离子液体吸收苯蒸汽由体系的吸收熵控制。[hmim][Tf2N]吸收熵变值最大,与苯混合物的热力学稳定性高,分子间作用力较强,对苯蒸汽的溶解性能强。苯的溶解度由阴离子决定,且按如下顺序递增:[BF-4] < [PF-6] < [Tf2N-]。

Abstract: Low vapor-liquid equilibria (VLE) of benzene in the selected five imidazole ionic liquids (ILs) was studied. VLE measurements were conducted over extremely low concentration range and at temperature varying from 303.2 K to 333.2 K. Based on the VLE data, Infinite Dilution activity coefficient (γ∞) and Henry’s constant (H) were derived and described formally by using NRTL activity coefficient model, with the deviation being less than 2%. In addition, the partial molar excess enthalpies at infinite dilution (HiE,∞) have been derived from the temperature dependence of the limiting activity coefficients, and partial molar enthalpies and entropies at infinite dilution have also been obtained from the temperature dependence of the Henry’s constants. The experimental results indicated that Henry’s constants increase with a rise in temperature, indicating that absorption of benzene in ILs is a typical physical absorption. When changing anion species of ILs from [BF-4] to [PF-6] or [Tf2N-], the γ∞ gradually decreases, and the behavior of benzene vapor dissolved in ILs gradually changes from positive deviation from Raoult’s law to negative deviation. The length of the alkyl chain slightly enhances the solubility of benzene. From analysis of thermodynamic properties, it is found that the absorption of benzene in imidazolium-based ILs is dominated by entropy. The [hmim][Tf2N] possesses the greatest entropy, leading to better absorption capability and thermodynamical stability. The anion of ionic liquids play a more important role in the solubility of benzene than cation, and the effect increases following the sequence [BF-4] < [PF-6] < [Tf2N-]

[1] 王海林, 张国宁, 聂 磊等. 我国工业VOCs减排控制与管理对策研究. 环境科学, 2011, 32(12): 34623468.
[2] 王铁宇, 李奇锋, 吕永龙. 我国VOCs的排放特征及控制对策研究. 环境科学, 2013, 34(12): 47564763.
[3] 席劲瑛, 武俊良, 胡洪营等. 工业VOCs气体处理技术应用状况调查分析. 中国环境科学, 2012, (11): 19551960.
[4] 魏巍. 中国人为源挥发性有机化合物的排放现状及未来趋势.博士学位论文. 北京; 清华大学 环境科学与工程系, 2009.
[5] Parmar G R, Rao N N. Emerging control technologies for volatile organic compounds. Critical Reviews in Environmental Science and Technology, 2008, 39(1): 4178.
[6] Vuong M D, Couvert A, Couriol C, et al. Determination of the Henry’s constant and the mass transfer rate of VOCs in solvents. Chemical Engineering Journal, 2009, 150(2~3): 426-430.
[7] Dumont E, Darracq G, Couvert A, et al. Determination of partition coefficients of three volatile organic compounds (dimethylsulphide, dimethyldisulphide and toluene) in water/silicone oil mixtures. Chemical Engineering Journal, 2010, 162(3): 927-934.
[8] Huddleston J G, Willauer H D, Swatloski R P, et al. Room temperature ionic liquids as novel media for ’clean’ liquid-liquid extraction. Chemical Communications, 1998, 16: 1765-1766.
[9] Hallett J P, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chemical Reviews, 2011, 111(5): 3508-3576.
[10] Huang K, Cai D N, Chen Y L, et al. Thermodynamic validation of 1-alkyl-3-methylimidazolium carboxylates as task-specific ionic liquids for H2S absorption. Aiche Journal, 2013, 59(6): 2227-2235.
[11] Milota M, Mosher P, Li K C. VOC and HAP removal from dryer exhaust gas by absorption into ionic liquids. Forest Products Journal, 2007, 57(5): 73-77.
[12] Quijano G, Couvert A, Amrane A, et al. Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chemical Engineering Science, 2011, 66(12): 2707-2712.
[13] Bedia J, Ruiz E, de Riva J, et al. Optimized ionic liquids for toluene absorption. Aiche Journal, 2013, 59(5): 1648-1656.
[14] Widegren J A, Magee J W. Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water. Journal of Chemical and Engineering Data, 2007, 52(6): 2331-2338.
[15] Jacquemin J, Husson P, Padua A A H, et al. Density and viscosity of several pure and water-saturated ionic liquids. Green Chemistry, 2006, 8(2): 172-180.
[16] Safarov J, Hassel E. Thermodynamic properties of 1-hexyl-3-methylimidazolium tetrafluoroborate. Journal of Molecular Liquids, 2010, 153(2~3): 153-158.
[17] Harris K R, Kanakubo M, Woolf L A. Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data, 2007, 52(3): 1080-1085.
[18] Verevkin S P, Safarov J, Bich E, et al. Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide. Fluid Phase Equilibria, 2005, 236(1-2): 222-228.
[19] Foco G M, Bottini S B, Quezada N, et al. Activity coefficients at infinite dilution in 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids. Journal of Chemical and Engineering Data, 2006, 51(3): 1088-1091.
[20] Letcher T M, Soko B, Ramjugernath D, et al. Activity coefficients at infinite dilution of organic solutes in 1-hexyl-3-methylimidazolium hexafluorophosphate from gas-liquid chromatography. Journal of Chemical and Engineering Data, 2003, 48(3): 708-711.
[21] Heintz A, Kulikov D V, Verevkin S P. Thermodynamic properties of mixtures containing ionic liquids. 2. Activity coefficients at infinite dilution of hydrocarbons and polar solutes in 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide and in 1,2-dimethyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide using gas-liquid chromatography. Journal of Chemical and Engineering Data, 2002, 47(4): 894-899.
[22] Krummen M, Wasserscheid P, Gmehling J. Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique. Journal of Chemical and Engineering Data, 2002, 47(6): 1411-1417.
[23] Kato R, Gmehling J. Systems with ionic liquids: Measurement of VLE and gamma(infinity) data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(O1). The Journal of Chemical Thermodynamics, 2005, 37(6): 603-619.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!