南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (3): 596–.

• • 上一篇    下一篇

GSFLOW在干旱区地表水与地下水耦合模拟中的应用

张浩佳1,吴剑锋1,*,林锦2,吴鸣1,吴吉春1   

  • 出版日期:2015-04-23 发布日期:2015-04-23
  • 作者简介:1. 南京大学地球科学与工程学院水科学系,南京 210023; 2. 南京水利科学研究院,南京 210029
  • 基金资助:
    国家自然科学基金资助项目(41030746和41372235)

Application of GSFLOW to the modeling of groundwater-surface water interaction in an arid watershed

Zhang Haojia1, Wu Jianfeng1,*, Lin Jin2, Wu Ming1, Wu Jichun1   

  • Online:2015-04-23 Published:2015-04-23
  • About author:1. Department of Hydrosciences, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093; 2. Nanjing Hydraulic Research Institute, Nanjing, 210029

摘要: 地表水-地下水具有复杂的相互转换关系,但是相关的地表水-地下水耦合模拟模型应用较少。本文通过分析GSFLOW模型的结构、原理及计算过程等,应用GSFLOW模型对干旱区进行地表水-地下水耦合模拟。根据区现有资料,利用GSFLOW模型构建了地表水-地下水耦合模型并利用2000-2005年两个径流测站数据、地下水观测井数据和博斯腾湖水位数据与模型模拟结果进行比较分析。研究结果表明,模型各个径流测站径流量的N模型确定性系数在0.67以上,观测井平均误差约1.2m,开都河东支模拟出流量和博斯腾湖水位变化的趋势相近,取得较好的模拟精度。GSFLOW模型可以较为真实反应出地表水-地下水相互作用的影响及河流径流量的变化,可以作为地表水-地下水相互作用的评估工具,实际地表水-地下水资源的统一管理。

Abstract: Due to the complexity of the groundwater-surface water interaction, the coupled surface water and groundwater flow simulation model is seldom used in arid watersheds. This paper reviews the several existing methods for coupling the surface water and groundwater simulations. Then this paper introduces the GSFLOW model in terms of its structure, principle and calculation process and uses it for modeling the interaction between the surface water and groundwater in an arid watershed. According to the existing data and conditions in the Kaidu River basin, the coupled surface water and groundwater flow model is constructed using GSFLOW and GIS tools. Also, the model is calibrated and validated by using the observation data of runoff, groundwater and surface water levels of Bositeng Lake from 2000 to 2005. The results show that the Nash coefficient for runoff simulations is over 0.67, the absolute averaged error between the observed and simulated groundwater level is about 1.2 m, and the trend of the water level of Bositeng Lake is in agreement with the runoff of Kaidu River, indicating that the model achieves satisfying simulation accuracy. This paper shows that the GSFLOW model is a helpful tool for assessing the groundwater-surface water interaction and can be used for integrated management of surface water and groundwater resources in arid watersheds

[1] 徐力刚, 张奇, 左海军. 地表水地下水的交互与耦合模拟研究现状与进展. 水资源保护, 2009, 25(5): 82-85.
[2] 王蕊, 王中根, 夏军. 地表水和地下水耦合模型研究进展. 地理科学进展, 2008, 27(4): 37-41.
[3] Scibek J, Allen D M, Cannon A J, et al. Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. Journal of Hydrology, 2007, 333(2): 165-181.
[4] 武强, 孔庆友, 张自忠等. 地表河网-地下水流系统耦合模拟I:模型. 水利学报, 2005, 36(5): 588-592.
[5] 武强, 徐军祥, 张自忠等. 地表河网-地下水流系统耦合模拟II:应用实例. 水利学报, 2005, 36(6): 754-758.
[6] 刘路广,崔原来. 灌区地表水-地下水耦合模型的构建. 水利学报,2012,43(7):826-833.
[7] Bathurst J C, Wicks J M, O’Connell P E, et al. The SHE/SHESED basin scale water flow and sediment transport modelling system. Computer Models of Watershed Hydrology. 1995: 563-594.
[8] Sophocleous M A, Koelliker J K, Govindaraju R S, et al. Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas. Journal of Hydrology, 1999, 214(1): 179-196.
[9] 王中根, 朱新军, 李尉等. 海河流域地表水与地下水耦合模拟. 地理科学进展, 2011, 30(11): 1345-1353.
[10] 胡立堂, 王忠静, 赵建世等. 地表水和地下水相互作用及集成模型研究. 水利学报, 2007, 38(1): 54-59.
[11] Niswonger R G, Regan R S, Prudic D E, et al. GSFLOW, Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). US Department of the Interior, US Geological Survey, 2008.
[12] Leavesley G H, Stannard L G, Singh V P. The precipitation-runoff modeling system-PRMS. Computer Models of Watershed Hydrology, 1995: 281-310.
[13] Harbaugh A W. MODFLOW-2005, the US Geological Survey modular ground-water model: The ground-water flow process. Reston, VA, USA: US Department of the Interior, US Geological Survey, 2005.
[14] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 1970, 10(3): 282-290.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!