南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (1): 206–216.

• • 上一篇    

 α-丙氨酸分子在扶手椅型SWBNNT(9,9)内的手性转变机制

 王佐成1,2,梅泽民3*,吕 洋4
  

  • 出版日期:2015-01-04 发布日期:2015-01-04
  • 作者简介: (1. 白城师范学院物理学院,白城, 137000;2. 吉林大学原子与分子物理研究所,长春, 130012;
    3. 白城师范学院化学学院,白城, 137000;4. 白城师范学院网络管理中心,白城, 137000)
  • 基金资助:
     国家自然科学基金(11004076),吉林省科技发展计划(20130101131JC),白城师范学院科技计划重点项目(2013第A2号)

  The chiral shift mechanism of α-alanine inside single-walled armchair SWBNNT (9, 9)

 Wang Zuocheng 1,2, Mei Zemin3*, Lv Yang4
  

  • Online:2015-01-04 Published:2015-01-04
  • About author: (1. Physics Department, Baicheng Normal College, Baicheng, 137000, China;
    2. Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, China;
    3. Chemistry Department, Baicheng Normal College, Baicheng, 137000, China;
    4. Network Management Center, Baicheng Normal College, Baicheng, 137000, China )

摘要:  采用组合的量子化学ONIOM(our own n-layered integrated molecule orbit and molecule mechanics )(B3LYP/6-31++G(d,p):UFF)方法, 研究了限域在SWBNNT(9,9)内α-丙氨酸的分子结构和手性转变通道.为得到高水平的能量,在ONIOM(B3LYP/6-311++G(3df,3pd):UFF)水平,计算了各个包结物的单点能.分子结构分析表明:与单体α-丙氨酸相比, 受限在SWBNNT(9,9)内时,骨架碳氮原子间的键长不同程度地缩短,骨架碳原子的键角及骨架碳氮原子的二面角略有增大.反应路径研究发现:α-丙氨酸分子在SWBNNT(9,9)内的手性转变有两条同单体情况大致相同的反应通道,不存在单体情况的含有羰基H和甲基H协同转移过程的反应通道.手性转变反应过程的势能面计算发现:与单体α-丙氨酸手性转变反应过程的主要能垒相比较,在纸外面的氢从手性碳直接到羰基氧的过渡态产生的能垒,从326.5 kJ?mol-1降到319.7 kJ?mol-1;氢首先在羧基内转移,而后手性碳的氢在纸面外转移到羰基,这两个过程的能垒从198.0 kJ?mol-1和320.3 kJ?mol-1降到135.5 kJ?mol-1和302.7 kJ?mol-1.结果表明:限域在SWBNNT(9,9)内的α-丙氨酸,其手性转变过程中不同的氢转移反应能垒被不同程度地降低. 


Abstract:  Methods of combined quantum chemistry ONIOM (Our own N-layered Integrated molecule Orbit and molecule Mechanics) are widely used to study the chemical reaction system associated with nanotubes. This work will study the system which is divided into two layers. The inner layer is α-alanine, using the B3LYP method based on density functional theory, and basis set selection 6-31++G (d, p); The outer layer, a single arm boron nitride nanotubes SWBNNT (9,9) is processed by using molecular mechanics UFF (universal force field) force field, and then the molecular structure and the hiral transition reaction mechanism of α-alanine confined in SWBNNT (9,9) are studied, besides, the stable point and transition state of chiral shift reaction process has been optimized. By analyzing the imaginary frequency vibration mode of transition states and intrinsic reaction coordinate (IRC)calculation for the transition states, the reliability of the transition state has been determined. In order to obtain relatively high levels of energy of the system, here we depict potential energy surface of the relatively exact chirality process of transformation and calculate a single point energy of each Inclusion on the ONIOM (B3LYP /6-311++G(3df, 3pd): UFF) level. Then correcting the total system energy of zero-point vibrational energy, we draw the potential energy surface of the reaction process. The analysis to molecular structure shows that: compared with the monomer α-alanine, the bond lengths of skeleton C-N are shorten in different degree when α-alanine is confined in SWBNNT (9,9). At the same time, the bond angles of skeleton carbons and the dihedral angles of skeleton C-N increase slightly. The study of reaction channel of chiral shift shows that: there are two roughly same reaction with channels of chiral shift of α-alanine in SWBNNT (9,9), and only the reaction channel of collaborative transfer of hydrogen in carbonyl and methyl without monomer. The calculation of potential energy surface in chiral shift reaction shows that: compared the monomer α-alanine chiral transformation, when α-alanine is limited in SWBNNT (9,9), the energy barrier of outboard hydrogen which transfers from chiral carbon directly to oxygen in carbonyl reduces from 326.5 kJ?mol-1 to 319.7 kJ?mol-1. The energy barriers of hydrogen transfer inside the carboxyl and hydrogen in chiral carbon transfer from outboard to carbonyl respectively decrease from 198.0 kJ?mol-1 and 320.3 kJ?mol-1 to 135.5kJ?mol-1 and 302.7 kJ?mol-1. The results show that:the energy barriers of different hydrogen transfer decrease in different degree, when α-alanine is limited in SWBNNT (9, 9).

 [1] George H F, Antimo D’Aniello, Amedeo V, et al. Free D-aspartate and D-alanine in normal and Alzheimer brain. Brain Research Bulletin, 1991, 26(6): 983~985.
[2] Robert J T, Archie Bouwer H G, Daniel A P, et al. Pathogenicity and immunogenicity of a listeria monocytogenes strain that requires D-alanine for growth. Infection and Immunity, 1998, 66(8): 3552~3561.
[3] 刘凤阁,赵衍辉,钱 研等. 孤立条件下手性α-丙氨酸分子结构特性的理论研究. 吉林师范大学学报,2013, 34(4): 47~51.
[4] Stepanian S G, Reva I D, L. Adamowicz, et al. Conformational behavior of α-alanine matrix-isolation infrared and theoretical DFT and ab initio study. Physical Chemistry A, 1998, 102(24): 4623~4629.
[5] 龚 ,易 芳,王文清. 丙氨酸对映体单晶的变温偏振激光拉曼光谱研究. 光散色学报, 2002, 14(3): 145~149.
[6] 王文清,刘轶男,龚 .手性分子的宇称破缺:D和L丙氨酸的变温中子结构研究. 物理化学学报, 2004, 20 (11): 1345~1351.
[7] 王佐成,刘凤阁,吕 洋等.孤立条件下α-丙氨酸分子手性转变机制的DFT研究. 吉林大学学报(理学版), 2014, 52 (4): 825~830.
[8] 王佐成,佟 华,王丽萍等. 水环境下α-丙氨酸分子手性转变机制的理论研究.吉林大学学报(理学版), 2015, 53 (1):
[9] 王佐成,赵衍辉,罗香怡等.α-丙氨酸分子手性转变反应通道及水分子作用的理论研究. 浙江大学学报(理学版), 2015,42 (2):
[10] 陈晋豪,吴 静,王罗新等.碳纳米管CNT(5,5)内环氧乙烷的阴离子聚合机理. 武汉纺织大学学报,2012, 25 (3): 30~33.
[11] 王罗新,许 杰,邹汉涛等.手性和尺寸对受限于单壁碳纳米管内的硝基甲烷热解反映的影响. 物理化学学报,2010, 26 (3): 721~726.
[12] Svensson M, Humbel S, Froese R D J, et al. ONIOM: A multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels?Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. Physical Chemistry, 1996, 100(50): 19357~19363.
[13] Becke A D. Density-functional thermochemistry. III. The role of exact exchange. Chemical Physics, 1993, 98: 5648.
[14] Rappe A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 1992, 114 (25): 10024~10053.
[15] Garrett B C, Truhlar D G. Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules. Journal of Physical Chemistry, 1979, 83(8): 1052~1079.
[16] Garrett B C, Truhlar D G. Criterion of minimum state density in the transition state theory of bimolecular reactions. The Journal of Chemical Physics, 1979, 70(4): 1593~1598.
[17] Ishida K, Morokuma K, Komornicki A. The intrinsic reaction coordinate. An ab initio calculation for HNC→HCN and H-+ CH4 →CH4+ H-*. The Journal of Chemical Physics, 1977, 66:2153~2156.
[18] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09. Revision D.01. Gaussian, Inc.: Wallingford CT, Pittsburgh, PA, 2013.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!