南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (2): 143–.

• • 上一篇    下一篇

锆酸锶掺Co后磁性质的第一性原理研究

唐春红1,2*,吴庆春1,崔云康1   

  • 出版日期:2014-04-07 发布日期:2014-04-07
  • 作者简介:(1. 南京工程学院非线性物理研究所,南京,211167;2. 南京大学物理学院固体微结构国家重点实验室,南京,210093)
  • 基金资助:
    国家自然科学基金(51002075,51172067),江苏省高校自然科学基金(12KJB510004),南京工程学院创新基金(ZKJ201204,CKJA201207)

First-principles study on the ferromagnetism of Co-doped SrZrO3

Tang Chunhong1,2,Wu Qingchun1,Cui Yunkang1   

  • Online:2014-04-07 Published:2014-04-07
  • About author: (1.Institute of Nonlinear of Technology, Nanjing Institute of Technology, Nanjing,211167, China; 2.National Laboratory of Solid State Microstructures, Physics Department, Nanjing University, Nanjing,210093, China)

摘要: 本文使用在位库仑作用、局域密度近似下的投影缀加平面波方法,计算了钙钛矿材料锆酸锶(SrZrO3)-Co之间的间距L为0.4097 nm,即最近邻,且体系为铁磁构型时对应的总能B位后,容易出现Co离子的团簇聚集,出现铁磁性;电子能带结构图显示Co部分替代Zr4+后变为Co4+(3d)3+(3d)d轨道未占据,又由于掺杂Co后其d轨道与近邻O的p轨道有强烈杂化,有部分Co的d轨道及O的部分p轨道越过价带进入带隙,在0~2.60 eV之间,自旋向上出现3条Co3d能带,自旋向下出现7条Co3d能带,且导带底向低能移动;部分Co离子替代钙钛矿B位的Zr4+后,体系出现磁性,由于Co离子形式化合价为+3,替代Zr4+后,这种空穴掺杂将在价带顶引入空的掺杂能级;态密度结果表明该能级为Co4+离子部分空的d轨道,通过O的p轨道,造成体系中Co3+、Co4+离子的出现,而它们之间的双交换耦合使得体系出现铁磁性。

Abstract: The structural, electronic properties, and the ferromagnetism of Co-doped orthorhombic SrZrO3 are calculated using the first-principles methods, which are performed within the density functional theory (DFT) using the projector augmented wave (PAW) implemented in the Vienna ab initio Simulation Package (VASP), and the exchange-correlation potential is treated in the local density approximation using the Ceperly-Alder scheme. SrZrO3 has been the subject of investigations because of its technological applications. For instance, the wide band gap and high dielectric constant of SrZrO3 can be used in the electronic industry, and its refractory properties are of interest in hightemperature applications.The first-principles methods have been a powerful tool for obtaining accurate ground state and indicating the relevance between the microscopic structure and the properties. The lattice parameters and atomic positions are relaxed until the total energy changed by less than 10-5 eV per conventional cell and residual force is smaller than 0.01 eV/?. All the calculations reach good convergence. The calculated results show that the Zr atoms in B sites of perovskite structure substituted by Co atoms induce the ferromagnetism in the SrZr0.875Co0.125O3. The results showed that, when the spacing between the Co-Co is 0.4097 nm, i.e. nearest neighbor, and the system is the the ferromagnetic configuration , the calculating engery is corresponding to the minimum total energy, which indicate that the Co dope into the perovskite B bit to come into being the Co ion clusters and to appear ferromagnetic. The electronic band structure diagram states clearly that the partly Zr4 + being alternated by Co become the Co4 + (3d5) to have an empty d orbital not being occupied relativing to the standardized aggregate price of Co3 + (3d6). Because of doped Co d orbitals and O p orbitals have a strong hybrid to shift up the top of the valence band and shift down the bottom of the conduction band. It means that the doped of Co reduces the band gap. It also appears the three Co3d bands(up-spin) and the seven Co3d bands(down-spin) between 0 and 2.60 eV. The substitution induces the hole due to +3 valence of Co ions. The results of the projected local densities of states shows that the doped energy level are the partly empty d orbits of the Co4+ ions. The double exchange interaction between Co3+ and Co4+ ions is believed to be the origin of magnetism in the SrZr0.875Co0.125O3 .

[1] Ligny D D, Richet P. High-temperature heat capacity and thermal expansion of SrTiO3 and SrZrO3 perovskites . Physical Review B, 1996, 53:3013~3022.
[2] Slonimskaysa E A , Belyakov A V. Ceramics based on strontium zirconate (a review). Glass and Ceramics, 2001, 58 (1-2):54~56.
[3] Shende R V, Krueger D S, Rossetti Jr G A, et al. Strontium zirconate and strontium titanate ceramics for high-voltage applications: synthesis, processing, and dielectric properties. Journal of the American Ceramic Society,2001,84:1648~1650.
[4] Tang C H, Liu X M, Huang F Z, et al. Structural and electric properties of SrZrO3 thin films with different annealing conditions. Journal of Applied Physics, 2009, 105, 061632-1~061632-4.
[5] 胡嗣强, 黎少华. 水热合成技术的研究和应用—Ⅴ.锆酸锶、锆酸钡晶体粉末的制备研究.化工冶金,1995,16(1):36~41.
[6] 李宝华,郑文君,庞文琴. SrZrO3基质氧化物粉体的水热合成和表征. 材料研究学报,1999,13(2):202~205.
[7] Lee J S, Khim Z G ,Park Y D, et al. Magnetic properties of Co- and Mn-implanted BaTiO3, SrTiO3 and KTaO3. Solid-State Electron, 2003, 47:2225~2230.
[8] Nakayama H, Katayama-Yoshida H. Theoretical prediction of magnetic properties of Ba(Ti1?xMx)O3 (M=Sc,V,Cr,Mn,Fe,Co,Ni,Cu). Japanese Journal of Applied Physics, 2001,40(2):L1355~L1358.
[9] Xu B, Yin K B, J Lin, et al. Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3 . Physical Review B, 2009,79: 134109-1~134109-5.
[10] Kresse G, Furthmüller J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996(6):15~50.
[11] Kresse G, Joubert D, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59:1758~1775.
[12] Dudarev S L, Botton G A, Savrasov S Y et al. Electron-energy-loss spectra and the structural stability of nickel: An LSDA+U study. Physical Review B 1998, 57:1505~1509.
[13] Bloch P E. Projector augmented-wave method. Physical Review B, 1994,50:17953~17979.
[14] 唐春红,张俊廷,林长圣.钙钛矿型YNiO3电子能带结构的第一性原理研究 .河南科技大学学报(自然科学版),2010, 31(6): 9~12.
[15] Lee J Y , Swinnea J S, Steinfink H, et al. The crystal chemistry and physical properties of the triple layer perovskite of intergrowths LaSr3Fe3O10-δ and LaSr3(Fe3-xAlx)O10-δ. Journal of Solid State Chemistry,1993, 103:1~8.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!