南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (2): 129–.

• • 上一篇    下一篇

一种高选择性液相氧化甲苯制备苯甲醛的方法

颜久娟1,巫先坤1,左凎丞1,张  锋1*,张志炳1*   

  • 出版日期:2014-04-07 发布日期:2014-04-07
  • 作者简介: 南京大学化学化工学院,南京,210093
  • 基金资助:
    National Natural Science Foundation of China (21306078)

A novel way of liquid phase oxidation of toluene to benzaldehyde with improved selectivity

  

  • Online:2014-04-07 Published:2014-04-07
  • About author: Yan Jiujuan1, Wu Xiankun 1, Zuo Gancheng 1, Zhang Feng1*, Zhang ZhiBing1*

摘要: 苯甲醛是一种重要的化学中间体和美国食品药物管理局认证的添加剂。现代化工生产苯甲醛的工艺存在很多的不足,本文通过向溶剂中添加乙酸酐的方法提高了苯甲醛的选择性和产率,讨论了乙酸酐在甲苯氧化过程中的作用,并获得其优化工艺条件。在该条件下苯甲醛选择性最高达68.69%,产率最高为26.12%,且反应温度(98 ℃),反应压力(1 atm O2)都较之前报道的文献温和很多,该反应条件有腐蚀性低、能耗低、副产物少等优点。此外,本文还研发出一种简便有效的催化剂回收方法。

Abstract: Benzaldehyde is an important chemical intermediate and F.D.A.-approved synthetic flavoring substance. There are many drawbacks in the present industrial processes and the improvements are urgently required. In this study, we increased the selectivity and yield of benzaldehyde by simply adding acetic anhydride (AA). The role of AA was investigated and an easier recycling procedure for catalysts was developed. At a mild reaction temperature of 98℃ and rather low pressure of 1 atm oxygen, which give the advantages of lower equipment corrosion rate, the lower energy cost, and less by-products, the selectivity and yield of benzaldehyde can reach as high as 68.69% and 26.12%, respectively.

[1] Partenheimer W. Chemistry of the oxidation of acetic acid during the homogeneous metal-catalyzed aerobic oxidation of alkylaromatic compounds. Applied Catalysis A: General, 2011, 409~410: 48~54.
[2] Partenheimer W. Methodology and scope of metal/bromide autoxidation of hydrocarbons. Catalysis Today, 1995, 23 (2): 69~158.
[3] Jiang J, Jing Y, Zhang Y,et al. Highly Efficient Oxidation of Toluene to Benzoic Acid Catalyzed by Manganese Dioxide and N-Hydroxyphthalimide. Catalysis Letters, 2011, 141 (4): 544~548.
[4] Donati I, Sioli G, Taverna M. Caprolactam via toluene-SNIA VISCOSA process. Chimica & L Industria, 1968, 50 (9): 997~1005.
[5] Cui X, Shi F, Deng Y. Oxidative imination of toluenes catalyzed by Pd-Au/silica gel under mild reaction conditions. Chemical communications, 2012, 48 (61): 7586~7588.
[6]  Brutchey R L, Drake I J, Bell A, et al. Liquid-phase oxidation of alkylaromatics by a H-atom transfer mechanism with a new heterogeneous CoSBA-15 catalyst. Chemical communications, 2005, (29): 3736~3738.
[7] Barrault J, Pouilloux Y, Clacens J M, et al. Catalysis and fine chemistry. Catalysis Today, 2002, 75 (1~4): 177~181.
[8]  Pereñíguez R, Hueso J L, Gaillard F, et al. Study of oxygen reactivity in La1−xSrxCoO3−δ Perovskites for total oxidation of toluene. Catalysis Letters, 2012, 142 (4): 408~416.
[9] Wuertele C, Sander O, Lutz V, et al. Aliphatic C-H bond oxidation of toluene using Copper Peroxo complexes that are stable at room temperature. Journal of the American Chemical Society, 2009, 131 (22): 7544~7545.
[10]  Wang F, Xu J, Li X, et al. Liquid phase oxidation of toluene to benzaldehyde with molecular oxygen over copper-based heterogeneous catalysts. Advanced Synthesis & Catalysis, 2005, 347 (15): 1987~1992.
[11]  Singh A P, Selvam T. Liquid phase oxidation reactions over chromium silicalite-1 (CrS-1) molecular sieves. Journal of Molecular Catalysis a-Chemical, 1996, 113 (3): 489~497.
[12]  Hughes M D, Xu Y J, Jenkins P, et al.Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature, 2005, 437 (7062): 1132~1135.
[13]  Lv J, Shen Y, Peng L, et al. Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen. Chemical communications, 2010, 46 (32), 5909~5911.
[14]  Bulushev D A, Kiwi-Minsker L, Zaikovskii V I, et al. Formation of active sites for selective toluene oxidation during catalyst synthesis via solid-state reaction of V2O5 with TiO2. Journal of Catalysis, 2000, 193 (1): 145~153.
[15] Hamley P A, Ilkenhans T, Webster J M, et al. Selective partial oxidation in supercritical water: the continuous generation of terephthalic acid from para-xylene in high yield. Green Chemistry, 2002, 4 (3): 235~238.
[16] Nair K, Sawant D P, Shanbhag G V, et al. Aerial oxidation of substituted aromatic hydrocarbons catalyzed by Co/Mn/Br− in water-dioxane medium. Catalysis Communications, 2004, 5 (1): 9~13.
[17] Yin G C, Xi Z W, Cao G Y, et al. Selective oxidation of m-phenoxytoluene to m-phenoxybenzaldehyde with methanol as an additive in acetic acid. Applied Catalysis a-General, 1999, 185 (2): 277~281.
[18]  Seddon K R, Stark A. Selective catalytic oxidation of benzyl alcohol and alkylbenzenes in ionic liquids. Green Chemistry, 2002, 4 (2): 119~123.
[19] Kelly M D. Recovery process for oxidation catalyst in the manufacture of aromatic carboxylic acids. US Patent, 5955394: 1999-09-21.
[20]  Kantam M L, Sreekanth P, Rao K K, et al. An improved process for selective liquid-phase air oxidation of toluene. Catalysis Letters 2002, 81 (3-4): 223~232.
[21] Partenheimer W. The complex synergy of water in the metal/bromide autoxidation of hydrocarbons caused by benzylic bromide formation. Advanced Synthesis & Catalysis, 2004, 346 (2-3): 297~306.
[22] Bühler B, Schmid A, Hauer B, et al. Xylene monooxygenase catalyzes the multistep oxygenation of toluene and pseudocumene to corresponding alcohols, aldehydes, and acids in Escherichia coli JM101. Journal of Biological Chemistry 2000, 275 (14):10085~10092.
[23]  Xue M, Chen H, Shen J. Surface acidic and redox properties of V-Ag-O/TiO2 catalysts for the selective oxidation of toluene to benzaldehyde. Catalysis Letters, 2009, 128(3-4): 373~378.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!