南京大学学报(自然科学版) ›› 2012, Vol. 48 ›› Issue (3): 256–265.

• • 上一篇    下一篇

 新疆阿吾拉勒地区查岗诺尔铁矿床铜矿化的成因探讨*

 牛贺才1**,罗勇2,李宁波1.3,姜玉航1.3,杨武斌1.3,单强1,于学元1
  

  • 出版日期:2015-06-17 发布日期:2015-06-17
  • 作者简介: (1.中国科学院广州地球化学研究所,广州,510640;2.南阳师范学院环境科学与旅游学院,
    南阳,473061;3.中国科学院研究生院,北京,100049)
  • 基金资助:
    国家自然科学基金(41040029,41173040)

 Study on the Cu-mineralization of the Chagangnuoer Fe-deposit
in the Awulale area,Xinjiang

 Niu He-Cai1,Luo Yong2,Li Ning Bo1’3,Jiang Yu Hang1’3 ,Yang Wu Bin 1,3
Shun Qiang1,Yu Xue-Yuan 1
  

  • Online:2015-06-17 Published:2015-06-17
  • About author: (1 .Guangzhou lnsititutc of Geochemistry, Chinese Academy of Science, Guangzhou,510640,China;
    2. School of Environmental Science and Tourism,Nanyang Normal University, Nanyang, 473061,China;
    3. Graduate School of Chinese Academy of Science, Beijing, 100049,China)

摘要:  与西天门!阿昔拉勒石炭纪火门!活动有关的铁矿床普遍发育含铜的方解石脉,在局部地段构成伴生或独立铜矿体.钻孔揭露显示,查岗诺尔铁矿体内含铜方解石脉穿插在磁铁矿、石榴石、阳起石和绿帘石中,其形成明显晚于铁矿化.流体包裹体研究显示,查岗诺尔铁矿床后期铜矿化的成矿流体应为CO2 -CaCl2- NaCl一H2O体系的超临界流体.这种富含CO2的超临界流体不但具有较强的渗透性,而且对铜等成矿元素具有较高的溶解度,可以携带巨量成矿元素进行长距离迁移.由于体系的温度及CO2和H2S等挥发分含量降低,铜等成矿元素在流体中的溶解度明显下降并沉淀成矿.碳、氧位素分析结果显示,查岗尔铁矿床晚期铜矿化与区内早二叠世的钾质一超钾质岩浆活动有关.

Abstract: The Cu-bearing calcite veins, usually in association with the accessory or independent Cu mineralization, were widespread in Fe-deposits associated with Carbonaceous volcanics in the Awulale Mountains, western Tianshan.The drillings show that the calcite veins occurred significantly later than the Fe-mineralization, with cutting across the magnetite, garnet,actinolitc and cpidotc.This study investigated the fluid inclusions forming after the Fe-mineralization in the Chagangnuocr deposit. The results suggest that the Cu-mineralization fluid was a supercritical fluid of CO2一CaCl2一NaCI一H2O,Such CO2一rich fluid was of high permeability and solubility in Cu,and of high ability to transfer abundant ore-forming elements over along distance. As the temperature down to
280?C一240?C,the fluid would change into sault solution.The solubility would drop and the orrforming elements would precipitate, since the decrease of temperature and violates of CO2 and H2S. C一Oisotopes indicate that the Cu-mineralization related fluids of the Chagangnuoer Fe deposit wrere
derived from the Permian potassic and shoshonitic magmatisims.

[1]Feng J X, Shi F P,Wang B Y,et al. The syn- genetic volcanogenic iron ore deposits in Awu- lale Metallogenetic Belt,Western Tianshan
Mountains. Beijing; Geological Publishing House, 2010, 56-92.冯金星,石福品,汪帮辉等.西天山阿吾拉勒成矿带火山岩型铁矿.北京:地质出版社,2010, 56一92).
[2]Shan Q, Zhang B, Luo Y,et al. Characteristics and trace clement geochemistry of pyrite from the Songhu iron deposit,Nilek County, Xingjiang, China. Acta Petrologica Sinica, 2009, 25:1456-1464(单强,张兵,罗勇等.新疆尼勒克县松湖铁矿床黄铁矿的特征和微量元素地球化学.岩石学报,2009, 25; 1456一1464).
[3]Lu H G,Fan H R,Ni P, et al. Fluid lnclu- sions. Beijing; Science Press, 2004,172一228.
 (卢焕章,范宏瑞,倪培等.流体包裹体.北京:科学出版社,2004,172-228).
[4]Coplen T B, Kendall C,Hopple J. Comparison of stable isotope reference samples. Nature,1983,302:236一238.
[5]Zheng Y F, Chen J F. Stable isotope geochem- istry. Beijing; Science Press. 2000,155一208 (郑永飞,陈江峰.稳定同位素地球化学.北京:
科学出版社,2000, 155-208).
[6]Williams-Jones A E, Heinrich C A. Vapor transport of metals and the formation of mag- matirhydrothermal ore deposits.
Economic Ge ology, 2005,100:1287一1312.
[7]Lai J Q, Chi G X. CO2一rich fluid inclusions with chalcopyrite daughter mineral from the Fenghuangshan Cu-Fe-Au deposit,China;
implications for metal transport in vapor. Min- eralium Deposita, 2007,42:293一299.
[8]Henley R W, McNabb A. Magmatic vapor plumes and groundwater interaction in porphyry copper emplacement. Economic Geology, 1978,73:1一20.
[9]Heinrich C A,Ryan C G, Mernagh T P,et al. Segregation of ore metals between magmatic brine and vapor a fluid inclusion study using
PIXE microanalysis. Econimic Geology, 1992,87:1566~1583.
[10]Damman A H,Kars S M,Touret J L R,et al. PIXE and SEM analyses of fluid inclusions in quartz crystals from the K-alteration zone of the
Rosia Poicni porphyry-Cu deposit,Apuseni mountains,Rumania. Europcan Journal of Min- eralogy, 1996,8:1081一1096.
[11]Heinrich C A,Giinther D, Audetat A,et al. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid in-
elusions. Geology, 1999,27:755一758.
[12]Ulrich T,Gunther D, Heinrich C A. Gold con- centrations of magmatic brines and the metal budget of porphyry copper deposits. Nature,1999,399:676~679.
[13]Baker T,Van Achterberg E, Ryan C G, et al. Composition and evolution of ore fluids in a magmatirhydrothermal skarn deposit. Geolo- gy, 2004,32:117一120.
[14]Baker T,Van Achterberg E, Ryan C G, et al. Composition and evolution of ore fluids in a basaltic andesite from the Villarrica volcano
(Chile). Earth and Planetary Science Letters,2009,282:115~121.
[15]Kim J,Lee K Y,Kim J H. Metal-bearing mol- ten sulfur collected from a submarine volcano: Implications for vapor transport of metals in
scafloor hydrothermal systems. Geology, 2011,39:351一354.
[16]Yang K H,Scott S D. Possible contribution of  a metal-rich magmatic fluid to a sea floor hydro thermal system. Nature, 1996,383:420一423.
[17]Schmidt M A,Oberthur T,Vetter U,et al. High CO2 content of fluid inclusions in gold mineralizations in the Ashanti Belt, Ghana; A
new category of ore forming fluids? Mineralium Deposita 1997,32:107一118.
[18]Hanley J J,Mungall J F,Pettke T,et al. Ore metal redistribution by hydrocarbon-brine and hydrocarbonhalide melt phases,North Range
footwall of the Sudbury igneous complex, On- tario, Canada. Mineralium Dcposita, 2005,10: 237一256.
[19]Chi G, Williams-Jones A E, Dube B, et al. Carbonic vapor-dominated fluid systems in oro genirtype Au deposits. Geochimica et Cosmo
chimica Acta, 2005,69:A738.
[20]Chi G. Dube B. Williamson K,et al. Forma tion of the Campbell-Red Lake gold deposit by H2O-poor, CO2-dominated fluids. Mineralium
Deposita, 2006,40:726一741.
[21]Luo Y,Liao S P, Yang W B, et al. Fluid inclu- sion and carbon oxygen isotope studies in the Qiongbulake copper deposit from the Awulale
Mountains,Xinjiang, China. Mineral deposits,2011, 30: 547-556.罗勇,廖思平,杨武斌等.阿昔拉勒山琼布拉克铜矿床流体包裹体及
碳氧同位素研究.矿床地质,2011, 30;547一 556).
[22]Yang W B, Niu H C, Luo Y,et al. 40Ar/39 Ar age and geochemistry of the ultrapotassic magmatic rocks from Bugula in Nileke,Xinjiang
and its tectonic implication. Acta Petrologica Sinica, 2010, 26;3065-3073(杨武斌,牛贺才,罗勇等.新疆尼勒克县布谷拉超钾质岩浆岩
的40Ar/39A:年龄和地球化学特征.岩石学报,2010,26:3065一3073).
[23]Mauger R L. Ocellli:transient disequilibrium features in a Lower Carboniferous minette near Concord North Carolina. The Canadian Miner-
alogist,1998,26:117一132.
[24]Deme’ny A,Ahijado A,Casillas R,et al. Crustal contamination and fluid/rock interaction processes in the carbonatites of Fucrteventura,
(Canary islands,Spain):A C,O,H isotope study. Lithos, 1998,1:101一115.
[25]Cathcineau M. Canon site occypncyin chlorites and illites as a funection of temperature. Clay minerals, 1988,23:471一485.
[26]Pyle J M Haggerty S E. Silicate-carbonate liq uid im-miscibility in upper-mantle eclogues; Im plications for natrosilicic and carbonatitic conju
gate melts. Geochimica et Cosmochimica Acta, 1994,58:2997一3011.
[27]Kogarko I. N, Henderson C M B, Pacheco H. Primary carbonate system at 25 kbars and impli- canons for carbonatitc origin. Ca-rich carbon-
atite magma and carbonate-silicate-sulfide liquid immiscibility in the upper-mantle. Contributions to Mineralogy and Petrology, 1995,121:267一 274.
[28]Seifert W,Thomas R. Silicate-carbonate immis cibility; a melt inclusion study of melilitite and wehrlite xenoliths in tephrite from the Elbe
Zone,Germany. Chemie der Erde, 1995,55:263~279.
[29]Hoernle K,Tilton G, Le Bas M J,et al. Geo- chemistry of oceanic carbonatites compared with continental carbonatites; mantle recycling of
oceanic crustal carbonate. Contribution to Min- eralogy and Petrology, 2002,142:520一542.
[30]Sano Y,Williams S N. Fluxes of mantle and subducted carbon along convergent plate bound- arics. Geophysical Research Letters, 1996,23: 2749一2752.
[31]Marty B,Tolstikhin l N. CO2 fluxes from mid ocean ridges arcs and plumes. Chemical Geology,1998,145:233~248.
[32]Ducea M N, Saleeby J,Morrison J,et al. Sub ducted carbonates, metasomatism of wedges and possible connections to diamond formation
An example from California. American Mineral ogist,200,90:864一870.
[33]Van Achterbergh E,Griffin W I.,Ryan C G, et al. Subduction signature for quenched carbon- antes from the deep lithosphere. Geology 2002,30. 743一746
[34]Marin-Ceron M I,Moriguti T,Makishima A,et al. Slab decarbonation and C02 recycling in the Southwestern Colomhian volcanic arc.
Geochimca et Cosmoochimica Acta. 2010,74:1104~1121.
[35]Peccerillo A. Relationships between ultrapotas sic and carhonate-rich volcanic rocks in central Italy; petrogenetic and geodynamic implica-
tions. Lithos, 1998,43:267一279.
[36]Avanzinelli R,Lustrino M,Mattci M,et al. Potassic and ultrapotassic magmatism in the cir- cum-Tyrrhenian region; Significance of carhona-
ted pelitic vs. pelitic sediment recycling at de structive plate margins. Lithos,2009,113: 213一227.
[37]Lowenstern J B. Carbon dioxide in mamas and implications for hydrothcrmal systems. Minera lium Deposita,2001,36:490~502.
[38]Yu W, Ni P, Wang G G, et al. Evolution of ore- forming fluids of the Shapinggou porphyry mo- lybdenum deposit,Jinzhai,Anhui province.
Journal of Nanjing University(Natural Sci- ences), 2012, 48(3): 240-255.(于文,倪培,土国光等.安徽金寨县沙坪沟斑岩钥矿床
成矿流体演化特征.南京大学学报(自然科学),2012,48 (3):240一255).
























No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!