南京大学学报(自然科学版) ›› 2012, Vol. 48 ›› Issue (1): 15–19.

• • 上一篇    下一篇

 钙钦矿型PbZr03电子能带结构的第一性原理研究*

 唐春红1,2,张俊廷2,刘培生3,林长圣1**
  

  • 出版日期:2015-05-15 发布日期:2015-05-15
  • 作者简介: (1.南京工程学院非线性物理研究所,南京,211167;2.南京大学物理系固体物理微结构研究所,
    南京,210093;3.江苏省专用集成电路设计重点实验室,南通,226019)
  • 基金资助:
     国家自然科学基金(50972056),江苏省“青蓝工程”基金,江苏高校自然科学(10KJ A140043 ),南京工程学院创新
    基金(C:KJ2010013,QKJB2010027)

 FirsFprinciple study of the electronic band structure of lead zirconate

 Tanhg Chun Hong 1’2,Zhang Jun一Ting 2 ,Liu Pei-Sheng3 ,Lin Chang Sheng1   

  • Online:2015-05-15 Published:2015-05-15
  • About author: (1 .institute of Nonlinear of Technology, Nanjing institute of Technology, Nanjing, 211167,China; 2. National
    Laboratory of Solid State Microstructures, Physics Department,Nanjing University, Nanjing, 210093
    China; 3. Jiangsu Key Laboratory of Application Specific integrated Circuit Design Nantong University, Nantong, 226019,China)

摘要:  采用第一性原理局域密度近似下的投影缀加平面波为一法精确计算并比较了钙钦矿材料PbZrO3低温正交相(反铁电相)、高温立为一相(顺电相)的电子能带结构.PbZO3无作为一种重要的反铁电
材料,在高密度储能电容器,换能器和可控开关电容等领域其有重要的应用前景,同时关于其反铁电来源和电场驱动下的反铁电相变的理论研究其有重要意义.第一性原理为一法可以从微观上揭示结构与性
能之间的内在联系,有助于理解一此性质产牛的根源.PbZrO3晶体从立为一相到正交相的结构相变源丁氧八面体ZrO6的扭曲畸变和阳离子Pb 2+ 相对于阴离子O 2一的移动.第一性原理计算结果显示:PbZrO3
正交相及立为一相的能带均为直接带隙绝缘体,带隙大小分别约为2. 61 eV,2. 35 eV,两相价带和导带主要是O的2p,态及Zr的4d态、Pb的6p,态组成;相对于立为一相,PbZrO3正交相大约在一5eV附近,Pb
的6p,态、Zr的4d态及O的2p,态有一个强峰,表明O, Zr与Pb的杂化效应比顺电相的增强,这是PbZrO3与BaTiO3同为钙钦矿结构但有不同的铁电行为的原因;由顺电相到反铁电相时,局域的Pb 6s 
态向低能移动,且O2p,也向低能移动并伴随着能带展开,这与Pb-O之间形成的杂化效应增强有关,它们的杂化起着降低原子间的短程排斥力的作用,有利于反铁电畸变的形成.能量计算结果也表明,反
铁电相能量比顺电相的低0.44 eV,进一步证实了PbZrO3,基态为反铁电相.

Abstract:  The structural and electronic properties of low-temperature orthorhombic PbZrO3(antiferroelectric phase) and higlrtemperature cubic phase(paraclectric) arc calculated using the first principle methods,which are
performed within the density functional theory using the projector augmented wave implemented in the Vienna ab initio Simulation Package, and the exchange-corrclation potential is treated in the local density approximation using
the Ceperly-Alder scheme.The first principles methods have been a powerful tool for obtaining accurate ground state and indicating the relevance betty ecn the microscopic structure and the properties,such as the ferroclectric
phase transition of BaTiO3,PbTiO3,.The ground state of PbZrO3 has been known to be antiferroclectric and the space groups of antiferroclectric and cubic phascare Pbam and Pm3m respectively.The initial structural parameters
arc adopted within previous studies.The structural relationship between cubic paraclectric and orthorhombic antiferroclectric phase can be understood with two distortions from the cubic geometry; one is the cooperative
distortion of the adjacent oxygen octahedra and the other is the opposite displacement of Pb ions between the adjacent unit cells, which dominates the antiferroclectric origin of the orthorhombic phase.This low-temperature
structure is characterized by antiparallcl displacement of Pb atoms in the a6 plane with subsequent rotation of ZrO6 octahedra, meanwhile, the positions of Zr atoms mainly remain unchanged.The lattice parameters and atomic
positions are relaxed until the total energy changed by less than 10一5 eV per conventional cell and residual force is smaller than 0. 0l eV/A. All the calculations reach good convergence.The calculated results show that the cubic and
orthorhombic phase are both direct gap insulators, and the band daps correspond to the values about 2. 61 and 2. 35 eV,respectively, In both cubic and orthorhombic PbZrO3,the valence band and the conduction band arc mainly
composed ofO2p, Zr 4d and Pb 6p states. Compared to the cubic phase, the main difference for the orthorhombic PbZrO3 is the enhanced peak around一5 eV, which consists mainly of O 2p and Pb 6s and 6P orbits.This behavior
reflects the increase of Pb一O bond hybridization, indicating the different ferroclectric behavior from structurally similar perovskites BaTiO3.Meanwhile, the results of the DOS show that the local Pb 6s states and O 2p states of
the orthorhombic phase shift to the lower energy, which reduce the total energy of the system, in favor of stabilizing the orthorhombic ground state of PbZrO3.Actually, our results of calculations indicate the energy of
antiferroclectric phase PbZrO3 is lower than that of cubic phase about 0.44 eV, In summary, the conclusion is that the additional hybridization of O2p and Pb 6s and 6p orbits in orthorhombic PbZrO3, could provide a deeper insight
for understanding the antiferroclectric propertics, as compared with the cubic phase.



[1]Sawaguchi F,Maniwa H,Hoshino S. Antifer roclectric structure of lead zirconate. Physics Review, 1951,83:1078一1078.
[2]Jaffe B, Cook W J,Iaffe J. Piezoelectric Ce ramics.New York: Academic Press 1971;31~72
[3]Li Q L, Wang X S, Yin J,et al. Properties of ferroelectric capacitor YBCO/Pb(Ta 0.05 Zr 0.48 Ti 0.47)O3/YBCO/Pt/Ti02/SiO2/Si. ]ournal of Nanjing University(Natural Sciences),2001, 37(5);619-624.(李启亮,王栩牛,殷江等.
铁电薄膜电容器YBCO/Pb ( Ta 0.05 Zri 0.48 T 0.47 ) O3 /YBCO/Pt/TiO2/SiO2/Si 的性质.南京大学学报(自然科学),2001, 37(5);619一624).
[4]Jona F, Shiranc G, Pepinsky R. Optical study of PbZrOs and NaNbO3 single crystals. Physics Review, 1955,97:1584一1590.
[5]Pokharel B P, Pandey D. Effect of Ba 2+ substi tution on the stability of the antiferroelectric and  ferroelectric phases in(Pb一Ba)ZrO3 Phe nomenological theory considerations. Physics Review B. 2002,65.214108一1一214108一7.
[6]Piskunov S, Gopeyenko A,Kotomin E A,et al. Atomic and electronic structure of perfect and defective PbZrO3 Perovskite; Hybrid DFT calculations of cubic and orthorhombic phases. Computational Materials Science, 2007,4l: 195一201.
[7]Singh D J. Structure and energetics of antiferro electric PbZrO3.Physics Review B, 1995,52 12559一12563.
[8]Yin K,Zhou H Q, Xu S J. Phone dispersion relations and thermodynamic properties of mag- nesium aluminum spincl:A first principle study. Journal of Nanjing University(Natural Sciences),2008, 44(6):653一659.(尹坤,周
会群,徐士进.镁铝尖晶石声子色散关系及热力学性质的第一性原理研究.南京大学学报(自然科学),2008, 44(6) : 653一659).
[9]Jiang A M, Wu R X, Xu J. Band gap of two- dimensional magnetized photonic crystals by plane-wave expansion method. Journal of Nan- jing University(Natural Sciences),2008,44
(4):402~407.蒋爱敏,伍瑞新,徐杰.应用平面波展开法计算色散和各向异性二维磁性光子晶体的带隙.南京大学学报(自然科学),2008,44(4):402一407).
[10]Jia C,Zhang X Y. A method to estimate vacan cy-cluster formation energy of metals. Journal of Nanjing University(Natural Sciences 2009, 45(2);280-285.(贾冲,张喜燕.一种
近似计算金属多空位形成能的为一法.南京大学学报(自然科学),2009, 45(2);280-285.
[11]Roberston J. Band offsets of wid}band-gap ox ides and implications for future electronic de vices. Journal of Vacuum Science and Technolo gY B,2000,18(3):178一1792.
[12]Kresse G, Furthmuller J. Efficiency of ab initio total energy calculations for metals and semicon ductors using a plane-wave basis set. Computa tional Materials Science. 1996,(6):15一50.
[13]Krcsse G, Joubcrt D. From ultrasoft pseudopo  tentials to the projector augmented-wave meth od. Physics Review B, 1999,59:1758一1775.
[14]Dudarev S L, Botton G A,Savrasov S Y,et al. Electron-energy-loss spectra and the structural stability of nickel:An LSDA+U study. Phys- ics Revicw B, 1998,57:1505一1509.
[15]Cohen R E. Origin of ferroelectricity in Perovs  kite oxides. Nature,1992,358. 136一138.













No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!