南京大学学报(自然科学版) ›› 2021, Vol. 57 ›› Issue (6): 916–933.doi: 10.13232/j.cnki.jnju.2021.06.002

• • 上一篇    下一篇

月球的自二次坑研究

常伊人1, 肖智勇2,3()   

  1. 1.上海市星系与宇宙学半解析研究重点实验室,上海师范大学,上海,200233
    2.行星环境与宜居性研究实验室,中山大学大气科学学院,珠海,519082
    3.中国科学院比较行星学卓越创新中心,合肥,230026
  • 收稿日期:2021-07-02 出版日期:2021-12-03 发布日期:2021-12-03
  • 通讯作者: 肖智勇 E-mail:xiaozhiyong@mail.sysu.edu.cn
  • 作者简介:E⁃mail:xiaozhiyong@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金(41773063);中央高校基本科研业务费专项资金和中国科学院前沿重点部署项目(QYZDY?SSW?DQC028)

Self⁃secondaries on the Moon

Yiren Chang1, Zhiyong Xiao2,3()   

  1. 1.Shanghai Key Laboratory for Astrophsics,Shanghai Normal University,Shanghai,200233, China
    2.Planetary Environmental and Astrobiological Research Laboratory,School of Atmospheric Sciences,Sun Yat?sen University,Zhuhai,519082,China
    3.CAS Center for Excellence in Comparative Planetary,Hefei,230026,China
  • Received:2021-07-02 Online:2021-12-03 Published:2021-12-03
  • Contact: Zhiyong Xiao E-mail:xiaozhiyong@mail.sysu.edu.cn

摘要:

自二次坑是背景二次撞击坑中的一类,是撞击过程中近垂直溅射的物质回落至母坑的连续溅射沉积物上形成的二次坑.二次坑的概念于20世纪60年代首次提出于,直至近十年被发现和证实,研究自二次坑对完善撞击坑统计定年方法和撞击过程的物理机理具有重要意义.近年来,深空探测获取了多个天体的高分辨率遥感数据,前人已在月球、水星等天体表面发现了自二次坑.但是,自二次坑的详细成因机制以及自二次坑对撞击坑统计定年方法的具体影响依然存在大量未知.系统综述了自二次坑的发现和研究历史,介绍了自二次坑与其他不同类型二次坑的区别;重点梳理了自二次坑的可能成因机理及其对撞击坑统计定年方法的影响.最后,结合作者的最近研究进展,展望了自二次坑研究的突破口.

关键词: 月球, 撞击坑, 二次坑, 自二次坑, 撞击年代

Abstract:

Self?secondaries are a population of background secondaries. Self?secondaries are formed by the landing of impact fragments that were launched near vertically with respect to the surface tangent during the early stage of impact cratering. This population of secondaries was proposed to exist in the 1960s,but it was only recently discovered and confirmed in the past ten years. Study of self?secondaries is important to improve both the crater chronology system and impact cratering mechanism. Based on the high?resolution imagery data returned by recent planetary spacecrafts,self?secondaries have been recognized on various planetary bodies such as the Moon and Mercury. However,the detailed formation mechanism of self?secondaries and their specific influence on the statistical dating are unknown. In this review,we summarized the research history of self?secondaries on the Moon,and introduced the difference between self?secondaries and the other populations of secondaries. The possible formation mechanisms of self?secondaries are reviewed,together with their potential effects on lunar crater chronology. We reported recent progresses on the study of self?secondaries and suggested future research targets for self?secondaries.

Key words: Moon, impact crater, secondaries, self?secondaries, crater chronology

中图分类号: 

  • P691

图1

撞击坑统计定年方法(据参考文献[2-3,21-22,24])(a)月球上的阿波罗(A)、月球号(L)和嫦娥五号(Chang'E 5)采样点(底图数据来源于全月球LROC与Clementine镶嵌图);(b)不同的产生方程;(c)构建月球撞击坑定年函数[21]的校准点;(d)基于Speyerer et al[22]产生方程和Robbins[21]年代方程描绘的不同月表年龄的撞击坑大小?频率分布等时线"

图2

月球表面连续二次撞击坑的形貌(a)Copernicus撞击坑;(b)由Copernicus撞击坑产生的连续二次坑;(c)Tycho撞击坑;(d)由Tycho撞击坑产生的连续二次坑;(a~d)底图数据均来源于LROC WAC镶嵌图"

图3

月球上的Tycho撞击坑溅射纹近乎全球分布[8](a)Tycho溅射纹以红色曲线勾勒,底图数据来源于750 nm克莱门汀与彩色比底图;(b)Tycho溅射纹中的二次坑链;(c)图(b)方框显示的连续二次坑;(b~c)底图数据均来源于LROC WAC镶嵌图"

图4

水星上的Hokusai撞击坑溅射纹近乎全球分布[23](a)水星Hokusai撞击坑的撞击溅射纹分布范围可覆盖整个天体,底图数据来源于水星增强彩色镶嵌图;(b)位于(a)所示位置的Hokusai撞击坑溅射纹中的二次坑链,底图数据来源于MDIS NAC单色镶嵌图"

图5

第谷撞击坑北部溅射沉积物上撞击坑的密度差[23](a)着陆点附近的熔融池与熔融流,着陆点位置以星号标记;(b)在着陆点北部的普通弹道溅射沉积物几乎没有受到熔融流的改造;(c)Tycho撞击坑;(d)着陆点周围溅射沉积物的表面特征(图中显示了(a)与(b)的位置,(a)为熔融池与熔融流所在位置,(b)为普通弹道溅射沉积物所在位置);(e)溅射沉积物上具有不同地表特征的地质单元的撞击坑大小?频率分布((a~c)的底图数据来源于LROC NAC镶嵌图(编号:M131724362LE,M131724362RE),(c)的底图数据来源于LROC WAC镶嵌图)"

图6

Tycho撞击坑东部溅射沉积物上的自二次坑(a)Tycho撞击坑,底图数据来源于LROC WAC镶嵌图;(b)Tycho东部连续溅射沉积物上的自二次坑;(c)Tycho北部熔融流上的不规则小撞击坑((b)和(c)的底图数据来源于LROC NAC镶嵌图(编号:M150578086LE,M150578086RE,M131724362LE,M131724362RE))"

图7

Giordano Bruno撞击坑南侧溅射沉积物上的自二次坑(a)Giordano Bruno撞击坑,底图数据来源于LROC WAC镶嵌图;(b)连续溅射沉积物上被碎石部分掩埋的小撞击坑;(c)Giordano Bruno南部连续溅射沉积物上的自二次坑,连续溅射沉积物上的一些小坑被熔融流部分掩埋((b)和(c)的底图数据来源于LROC NAC镶嵌图(编号:M1098165325LE,M1098165325RE,M103831840LE,M103831840RE))"

图8

全球H参数图与等效月壤热惯量I [57]"

图9

单个冷点撞击坑及其对应的H值[14](a)位于120.12°E,29.73°S的冷点撞击坑(D=1051 m),底图数据来源于LROC NAC镶嵌图(编号:M1168926096LE,M1168926096RE);(b)子图a中冷点所对应的H值"

图10

单个冷点撞击坑周围的地貌位于冷点撞击坑(D=1140 m,中央经纬度为69.14°E,18.92°S)周围的自二次坑:(a)撞击坑坑缘周围的分层溅射沉积物,拥有不同反照率;(b)近端分层的溅射沉积物具有连续的、条纹状的特征;(c,e)自二次坑与分层的溅射沉积物具有交切关系,具体位于(a)中;(d)溅射层上出现连续的颗粒状流动物质(白色箭头标注)并覆盖下方地形;(e)自二次坑形成于溅射层上(白色箭头标注)并被之后沉积的熔融流横切,表明在溅射物沉积期间碎屑物质不断降落,太阳的光照方向来自北方(黄色箭头标注).底图数据来源于LROC NAC镶嵌图(编号:M104061987LE,M104061987RE,M157140015LE,M157140015RE,M1205554807LE,M157140015RE)"

图11

冷点撞击坑周围的自二次坑(a)位于136.80°E,42.16°S的冷点撞击坑(D=886 m),底图数据来源于LROC NAC镶嵌图(编号:M189693013LE,M189693013RE);(b)位于166.64°E,19.38°S的冷点撞击坑(D=1714 m),底图数据来源于LROC NAC镶嵌图(编号:M1199039069LE,M1199039069RE);(c)位于(a)方框中的分层溅射物与自二次坑的交切关系,底图数据来源于LROC NAC镶嵌图(编号:M169670692LE,M169670692RE);(d~e)位于(b)方框中的分层溅射物与自二次坑的交切关系,黄色箭头是太阳光照方向,底图数据来源于LROC NAC镶嵌图(编号:M1137814056LE,M1137814056RE)"

图12

冷点溅射沉积物上撞击坑的非均匀空间分布冷点撞击坑(D=2112 m,中央经纬度为121.31°E,18.68°N)溅射沉积物上的撞击坑非均匀分布:(a)冷点撞击坑是由南西方向倾斜撞击产生;(b)东部溅射沉积物上的撞击坑密度比临近的区域高得多,该区域于(a)中标注;(c)溅射流上高度聚集的撞击坑,小撞击坑穿透高反照率溅射物,挖掘底部的低反照率月壤,该区域于(b)中标注;(a~c)的底图数据来源于LROC NAC镶嵌图(编号:M1133385302LE,M1133385302RE)"

图13

冷点溅射沉积物上自二次坑的空间分布[14]冷点撞击坑(D=1714 m,中央经纬度为166.64°E,19.38°N)溅射流上挖掘出具有不同反照率物质的自二次坑的空间分布:(a~b)冷点撞击坑周围可见的分层溅射物,每一层具有不同的反照率(图b);(c)于溅射物中形成的暗色(绿色圆圈)与亮色撞击坑(黄色圆圈);(d)亮色与暗色自二次坑的直径,在直方图中,撞击坑直径的bin宽为2 m;(e)亮色与暗色撞击坑的空间密度图显示了聚集分布.绿色圆圈(D>4.5 m)与黄色圆圈(D>3.8 m)分别是挖出暗色和亮色局部物质的小撞击坑;(a~e)的底图数据来源于LROC NAC镶嵌图(编号:M171828061LE,M171828061RE)."

图14

冷点溅射沉积物上自二次坑的大小?频率分布[14]冷点撞击坑(D=2112 m,中央经纬度为121.31°E,18.68°N)周围溅射层上的撞击坑大小?频率分布,底图数据来源于LROC NAC镶嵌图(编号:M182739022LE,M182739022RE,M1138098470LE,M1138098470RE,M1133385302LE,M1133385302RE):(a)高度不对称的坑缘,可见溅射物的分布与冷点溅射纹均可证明撞击坑由倾斜撞击形成,入射方向为北(插图显示了冷点溅射纹的H参数,11个统计区由黄色曲线勾勒);(b~e)分别对比西部溅射物上三个统计区,东南部溅射物上两个统计区的撞击坑大小?频率分布;(f)对比入射与出射方向溅射物上两个统计区的撞击坑大小?频率分布;(g)对比西部与熔融溅射物上两个统计区的撞击坑大小?频率分布"

图15

冷点撞击坑周围额外自二次坑的密度[14,20-21](a)直径大于800 m的最年轻的冷点撞击坑(D=98 m,中央经纬度为90.76°E,5.39°S)的入射与出射方向溅射沉积物上的撞击坑大小?频率分布;(b)最年轻的冷点撞击坑(D=898 m,中央经纬度为 90.76°E,5.39°S)与图14中的冷点撞击坑(D=2112 m,中央经纬度为121.31°E,18.68°N)的入射与出射方向溅射沉积物上的撞击坑密度差.基于更新后的产生方程[20]与年代方程[21]估计了额外自二次坑的等效绝对模式年龄"

图16

撞击机理以及自二次坑可能的形成机制[66]"

1 Melosh H J. Impact Cratering:A geologic process. New York,NY,USA:Oxford University Press,1989.
2 Neukum G. Meteoritenbombardement and datierung planetarer oberfl?chen. Habilitation Dissertation for Faculty Membership. Munich,Germany:University of Munich Press,1983.
3 Neukum G,Ivanov B A,Hartmann W K. Cratering records in the inner solar system in relation to the Lunar reference system. Space Science Review,2001,96:55-86.
4 Hartmann W K. Martian Cratering 8:Isochron refinement and the chronology of Mars. Icarus,2005,174:294-320.
5 Shoemaker E M. Interpretation of Lunar craters. Physics and astronomy of the moon,New York,NY,USA:Academic Press,1962.
6 Oberbeck V R,Morrison R A. On the formation of the Lunar herringbone pattern.Proceedings of the Lunar Science Conference,1973,1:107-123.
7 McEwen A S,Preblich B S,Turtle E P,et al. The rayed crater Zunil and in interpretations of small impact crateron Mars. Icarus,2005,176(2):351-381.
8 Dundas C M,McEwen A S. Rays and secondary craters of Tycho. Icarus,2007,186:31-40.
9 Plescia J B,Robinson M S. Lunar self?secondary cratering:Implications for cratering and chronology∥The 46th Lunar and Planetary Science Conference,Houston,TX,USA,2015.
10 Shoemaker E M,Batson R M,Holt H E,et al. Television observations from surveyor Ⅶ,in surveyor Ⅶ mission report,part Ⅱ,science results. National Aeronautics and Space Administration Technology Report,1968,32–126A:9-76.
11 Shoemaker E M,Batson R M,Holt H E,et al. Observations of the lunar regolith and the earth from the television camera on surveyor 7. Journal of Geophysical Research:Planets,1969,74:6081-6119.
12 Plescia J B,Robinson M S,Paige D A. Giordano Bruno:The young and the restless∥The 41th lunar and planetary science conference,Houston,TX,UAS,2010.
13 Zanetti M,Stadermann A,Jolliff B,et al. Evidence for self?secondary cratering of Copernican?age continuous ejecta deposits on the Moon. Icarus,2017,298:64-77.
14 Chang Y,Xiao Z,Liu Y,et al. Self?secondaries formed by cold spot craters on the Moon. Remote Sensing,2021:13.
15 Boyce J M,15,Mounginis?Mark P J. Anomalous areas of high crater density on the rim of the Martian crater tooting. Abstracts of the workshop on issues in crater studies and the dating of planetary surfaces,Laurel,2015:19-22.
16 Xiao Z,Prieur N C,Werner S C. The self secondary crater population of the Hokusai crater on mercury. Geophysical Research Letters,2016,43:7424-7432.
17 Schenk P,Kirchoff M,Hoogenboom T,et al. The anatomy of fresh complex craters on the mid sized icy moons of Saturn and self?secondary cratering at the rayed crater Inktomi (Rhea). Meteoritics & Planet Science,2020,55:2440-2460.
18 St?ffler D,Ryder G,Ivanov B A,et al. Cratering history and Lunar chronology. Review Miner Geochem,2006,60:519-596.
19 Strom,R G,Malhotra R,Takashi I,et al. The origin of planetary impactors in the inner solar system. Science,2005,309:1847-1850.
20 Arvidson R E,Boyce J,Chapman C,et al. Standard techniques for presentation and analysis of crater size?frequnency data. Icarus,1979,37(2):467-474.
21 Robbins S J. A new crater calibrations for the lunar crater?age chronology. Earth and Planetary Science Letters,2014,403:188-198.
22 Speyerer E J,Povilaitis R Z,Robinson M S,et al. Quantifying crater production and regolith overturn on the Moon with temporal imaging. Nature,2016,538:215-218.
23 Xiao Z. On the importance of self?secondaries. Geoscience Letters,2018,5(17):1-15.
24 Hartmann W K,Neukum G. Cratering chronology and the evolution of Mars. Space Science Review,2001,96(1-4):165-194.
25 Ivanov B A. Mars/Moon impact rate comparsion:searching constraints for Lunar secondary/primary cratering proportion. Icarus,2001,96(1-4):87-104.
26 Marchi S,Mottola S,Cremonese G,et al. A new chronology for the Moon and Mercury. Astronomial Journal,2009,137(6):4936-4948.
27 Le Feuvre M,Wieczorek M A. Nonunigorm cratering of the Moon and a revised crater chronology of the inner solar system. Icarus,2011,214(1):1-20.
28 St?ffler D,Ryder G. Stratigraphy and isotope ages of lunar geologic units:Chronological standard for the inner solar system. Space Science Review,2001,96:9-54.
29 Chapman C R. Assessment of evidence for two populations of impactor in the inner solar system:implications for terrestrial planetray body history. Microsymposium 53:Early history of the terrestrial planets:new insights from the Moon and Mercury,Houston,TX,USA,2012.
30 McEwen A S,Bierhaus E B. The importance of secondary cratering to age constraints on planetary surfaces. Annal Review Earth Planetary Science,2006,34:535-567.
31 Schultz P H,Gault D E. Clustered impacts:Experiments and implications. Journal of Geophysical Research:Planets,1985,90:3701-3732.
32 Mahanti M,Robbins M S,Humm D C,et al. A standardized approach for quantitative characterization of impact of impact crater topography. Icarus,2014,241:114-129.
33 Shoemaker E M. Preliminary analysis of the fine structure of the lunar surface. Experimenters' Analyses and Interpretations,in Ranger Ⅶ,Part Ⅱ,Baltimore,MD,USA:Johns Hopkins Press,1965:75-134.
34 Xiao Z,Strom RG. Problems determining relative and absolute ages using the small crater population. Icarus,2012,220:254-267.
35 Neukum G,Koenig B,Arkani?Hamed J. A study of lunar impact crater size?distributions. The Moon,1975,12:201-229.
36 Neukum G,Ivanov B A. Crater size distributions and impact probabilities on Earth from lunar,terrestrialtype planet,and asteroid cratering data. In Hazards due to comets and asteroids,AZ,USA:The University of Arizona Press,1994:359-416.
37 Ivanov B A. Earth/Moon impact rate comparison:Searching constraints for Lunar secondary/primary cratering proportion. Icarus,2006,183:504-507.
38 Werner S C,Ivanov B A,Neukum G. Theoretical analysis of secondary cratering on Mars and an image?based study on the cerberus plains. Icarus,2009,200:406-417.
39 Xie M,Zhu M H,Xiao Z,et al. Effect of topography degradation on crater size?frequency distributions:Implications for populations of small craters and age dating. Geophysical Research Letters,2017,44:10171-10179.
40 Hartmann W K. Martian cratering 9. Toward resolution of the controversy about small craters. Icarus,2007,189:274-278.
41 Hartmann W K,Daubar I J. Martian cratering 11:Utilizing decameter scale crater populations to study Martian history. Meteoritics & Planetary Science,2017,52:493-510.
42 Strom R G,Fielder G. The multiphase development of the lunar crater tycho. Nature,1968,217:611-615.
43 Oberbeck V R,H?rz F,Morrison R H,et al. Smooth plains and continuous deposits of craters and basins∥The 5th lunar science conference,Houston,TX,USA,1974.
44 Robinson M S,Brylow S M,Tschimmel M,et al. Lunar reconnaissance orbiter camera instrument overview. Space Science Review,2010,150:81-124.
45 Xiao Z,Werner S C. Size?frequency distribution of crater populations in equilibrium on the moon. Journal of Geophysical Research:Planets,2015,120:2277-2292.
46 van der Bogert C H,Hiesinger H,Dundas C M,et al. Origin of discrepancies between crater size frequency distributions of coeval lunar geologic units via target property contrasts. Icarus,2017,298:49-63.
47 Gault,D E,Saturation and equilibrium conditions for impact cratering on the Lunar surface:Criteria and implications. Radio Science,1970,5:273-291.
48 Greely R,Fink J,Snyder D B,et al. Impact cratering in viscous targets:laboratory experiments∥The 11th Lunar Planetary Science Conference.Houston,TX,USA,1980:17-21.
49 Fink J H,Greely R,Gault D E. Impact cratering experiments in Bingham materials and the morphology of craters on Mars and Ganymede∥The 12th Lunar Planetary Science Conference.Houston,TX,USA,1981:16-20.
50 Plescia J B,Spudis P D. Impact melt flows at Lowell crater. Planet Space Science,2014(103):219-227.
51 Plescia J B,Robbinson M S. Giordano Bruno:Small crater populations?implication for self?secondary cratering. Icarus,2019,321:974-993.
52 Strom R G,Malhotra R,Xiao Z,et al. The inner solar system cratering record and the evolution of impactor populations. Research in Astron & Astrophys,2015,15(3):407-434.
53 Mouginis?Mark P J,Boyce J M. Chemie der Erde – Geochemistry,2012,72(1):1-23.
54 Melosh H J. Impact ejection,spallation,and the origin of meteorites. Icarus,1984,59:234-260.
55 Bandfield J L,Ghent R R,Vasavada A R,et al. Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner radiometer data. Journal of Geophysical Research,2011,116:1-18.
56 Vasavada A R,Bandfield J L,Greenhagen B T,et al. Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment. Journal of Geophysical Research:Planets,2012,117:1-12.
57 Hayne P O,Bandfield J L,Siegler M A,et al. Global regolith thermophysical properties of the Moon from the Diviner Lunar Radiometer Experiment. Journal of Geophysical Research:Planets,2017,122:2371-2400.
58 Bandfield J L,Song E,Hayne P O,et al. Lunar cold spots:Granular flow features and extensive insulating materials surrounding young craters. Icarus,2014,231:221-231.
59 Williams J P,Bandfield J L,Paige D A,et al. Lunar cold spots and crater production on the Moon. Journal of Geophysical Research:Planets,2018,123:2380-2392.
60 Xiao Z Y,Ding C Y,Xie M G,et al. Ejecta from the orientale basin at the Chang'E?4 landing site. Geophysical Research Letters,2021,DOI:10.1029/2020GL090935.
61 Robbins S J,Riggs J D,Weaver B P,et al. Revised recommended methods for analyzing crater size?frequency distributions. Meteoritics & Planetary Science,2018,53:891-931.
62 Anderson J L B,Schultz P H,Heineck J T. Asymmetry of ejecta flow during oblique impacts using three dimensional particle image velocimetry. Journal of Geophysical Recearch?Planets,2003,DOI:10.1029/2003JE002075.
63 Houson K R,Holsapple K A. Ejecta from impact craters. Icarus,2011,211:856-875.
64 Polanskey C A,Ahrens T J. Impact spallation experiments:Fracture patterns and spall velocities. Icarus,1990,87:140-155.
65 Osinski G R,Tornabene L,Grieve R A. Impact ejecta emplacement on terrestrial planets. Earth & Planet Scence Letters,2011,310(3):167-181.
66 Xiao Z Y,Strom R G,Chapman C,et al. Comparisons of fresh complex impact craters on Mercury and the Moon:Implications for controlling factors in impact excavation processes. Icarus,2014,228:260-275.
67 Plescia J B,Robinson M S. New constraints on the absolute lunar crater chronology∥The 42th Lunar and Planetary Science Conference.Houston,TX,USA,2011.
68 Plescia J B. Lunar crater forms on melt sheets?origins and implications for self?secondary cratering and chronology∥The 46th Lunar and Planetary Science Conference.Houston,TX,USA,2015.
69 Plescia J B. Uncertainties in the < 3 Ga lunar impact cratering chronology∥The 43th Lunar and Planetary Science Conference.Houston,TX,USA,2012.
70 Namiki N,Honda C. Testing hypotheses for the origin of steep slope of lunar size?frequency distribution for small craters. Earth Planets Space,2003,55:39-51.
71 Hiesinger H,van der Bogert C H,Pasckert J H,et al. How old are young lunar craters?Journal of Geophysical Research,2012,DOI:10.1029/2011JE003935.
[1] 崔兴立, 丁忞, 王冠. 基于卷积神经网络的月球南极⁃艾特肯盆地撞击坑自动识别及中型撞击坑绝对模式年龄估算[J]. 南京大学学报(自然科学版), 2021, 57(6): 905-915.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!