
基于稳定性优化的三维装配补全方法
3D assembly completion with stability optimization
三维装配补全是一项重要的交互式装配任务,对于一个半成品装配体,机器人需要明确其缺失部件,从候选部件中挑选正确部件,计算准确的拼装位姿,最后将半成品补全.稳定性是椅子、桌子等实际装配体设计的首要原则,也是三维装配补全的重要目标,现有的装配补全工作多根据部件的几何关系来优化装配补全过程,没有考虑补全后装配体的稳定性,导致补全结果的正确率不高,难以满足机器人实际装配的需求.针对上述问题,提出一种基于稳定性优化的三维装配补全方法(Finishing the Incomplete 3D Assembly with Transformer,StableFiT),定义了一种装配体稳定性验证方法.基于NVIDIA Isaac Sim仿真平台训练了一个装配体稳定性判别器,并基于稳定性判别器提供的稳定性反馈,优化了三维装配体的补全.在PartNet数据集上开展实验验证,结果表明StableFiT能够有效提升补全的装配体的正确性和稳定性.
3D assembly completion is an essential and complex interactive assembly task. The robot must identify the true missing parts,select the correct parts from a toolkit of candidates,calculate precise assembly poses,and ultimately make the incomplete assembly complete. As the primary principle in the design of actual assemblies such as chairs and tables,stability is also an ultimate goal of 3D assembly completion. Existing works of 3D assembly completion primarily focus on geometric relationship modeling of parts,without taking into account the stability of assembly,leading to low accuracy in completion and making it a challenge to meet the actual requirements of robot assembly. To tackle this issue,we propose StableFiT(Finishing the Incomplete 3D Assembly with Transformer) for 3D assembly completion with stability optimization. We introduce a novel stability verification method for the completed assembly. By training an assembly stability discriminator using the verification results obtained from the NVIDIA Isaac Sim simulation platform,we furtherly optimize 3D assembly completion based on stability feedback from the stability discriminator. Experimental results on the PartNet dataset demonstrate that StableFiT effectively improves the correctness and stability of the completed assemblies,addressing the limitations of existing assembly completion methods.
自动装配 / 三维装配补全 / 稳定性验证 / 稳定性优化 {{custom_keyword}} /
automatic assembly / 3D assembly completion / stability verification / stability optimization {{custom_keyword}} /
表1 StableFiT训练过程中损失函数权重的设置Table 1 Weights settings for loss function during StableFiT training process |
j | | | | | |
---|---|---|---|---|---|
1 | 1.0 | 10.0 | 10.0 | 1.5 | 0.1 |
3 | 1.0 | 10.0 | 5.0 | 1.5 | 0.1 |
表2 本文方法与基准方法的性能的比较Table 2 Performance of our method and the baseline methods |
类别 | j | 方法 | MA↑ | SCD↓ | PA↑ | CA↑ | PSA↑ |
---|---|---|---|---|---|---|---|
椅
子 | 1 | Complement | 77.69 | 0.0332 | 14.87 | 15.21 | - |
Single Image | 81.75 | 0.0141 | 34.72 | 29.80 | - | ||
FiT | 87.71 | 0.0089 | 63.56 | 49.94 | 90.10 | ||
StableFiT | 88.47 | 0.0084 | 66.45 | 51.19 | 90.95 | ||
3 | FiT | 70.77 | 0.0166 | 44.04 | 38.18 | 75.97 | |
StableFiT | 72.61 | 0.0157 | 48.28 | 37.52 | 77.47 | ||
桌
子 | 1 | Complement | 80.13 | 0.0136 | 28.89 | 40.72 | - |
Single Image | 82.39 | 0.0093 | 47.05 | 54.21 | - | ||
FiT | 92.56 | 0.0060 | 75.35 | 68.91 | 91.79 | ||
StableFiT | 91.83 | 0.0052 | 76.97 | 69.83 | 92.19 | ||
3 | FiT | 62.91 | 0.0084 | 49.56 | 43.46 | 82.78 | |
StableFiT | 68.06 | 0.0089 | 50.73 | 52.26 | 83.98 |
表3 各损失项对实验性能的影响Table 3 Effect of loss components on experiment results |
| | | | MA↑ | SCD↓ | PA↑ | CA↑ | PSA↑ |
---|---|---|---|---|---|---|---|---|
× | √ | √ | √ | 87.10 | 0.0106 | 49.35 | 36.96 | 82.31 |
√ | × | √ | √ | 84.91 | 0.0086 | 64.73 | 49.63 | 90.58 |
√ | √ | × | √ | 90.01 | 0.0100 | 63.00 | 48.68 | 91.20 |
√ | √ | √ | × | 87.71 | 0.0089 | 63.56 | 49.94 | 90.10 |
√ | √ | √ | √ | 88.47 | 0.0084 | 66.45 | 51.19 | 90.95 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
国家市场监督管理总局,国家标准化管理委员会. 办公家具 桌台类 稳定性、强度和耐久性测试方法. GB/T 38607⁃2020.
State Administration of Market Supervision and Administration of the People's Republic of China,Standardization Administration of the People's Republic of China. Office furniture:Tables and desks. Test methods for the determination of stability,strength and durability. GB/T 38607⁃2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |