南京大学学报(自然科学版) ›› 2020, Vol. 56 ›› Issue (3): 297–307.doi: 10.13232/j.cnki.jnju.2020.03.001

• •    下一篇

方解石晶体定向性对水的拉曼光谱影响的实验评估

刘显1,陈强路2,王小林1(),丘靥2,杨源显1   

  1. 1.南京大学地球科学与工程学院,南京,210023
    2.中国石化石油勘探开发研究院无锡石油地质研究所,无锡,214126
  • 收稿日期:2020-03-03 出版日期:2020-05-30 发布日期:2020-06-03
  • 通讯作者: 王小林 E-mail:xlinwang@nju.edu.cn
  • 基金资助:
    国家自然科学基金(41922023)

Experimental evaluation of the effect of calcite crystal orientation on the Raman spectrum of water: Application to the determination of salinity of natural fluid inclusions

Xian Liu1,Qianglu Chen2,Xiaolin Wang1(),Ye Qiu2,Yuanxian Yang1   

  1. 1.School of Earth Sciences and Engineering,Nanjing University,Nanjing,210023,China
    2.Petroleum Exploration and Production Research Institute of SINOPEC,Wuxi,214126,China
  • Received:2020-03-03 Online:2020-05-30 Published:2020-06-03
  • Contact: Xiaolin Wang E-mail:xlinwang@nju.edu.cn

摘要:

拉曼光谱是一种原位、快速、无损的分析技术,被广泛用于流体包裹体组分的定性描述和半定量?定量分析.盐水溶液的OH伸缩振动谱峰(νs?H2O)随流体盐度升高向高波数偏移,同时其对称性也逐渐增强,是反映流体盐度的良好指标.需要注意的是,具有双折射性的寄主矿物本身的晶体定向性也会影响νs?H2O谱峰的峰形,是限制该方法应用于自然包裹体盐度测定的重要因素.方解石是最常见的包裹体寄主矿物之一,其晶体定向性对νs?H2O谱峰的影响规律缺少系统的实验研究.应用熔融毛细硅管合成包裹体技术制备了一系列含不同浓度NaCl溶液的透明腔体,在室温条件下收集其拉曼光谱,经过拟合处理后,建立了NaCl浓度和拉曼光谱参数之间的定量关系.而后,系统分析了沿101111210001方向制备的方解石薄片的方向性对溶液的νs?H2O谱峰的影响规律.方解石晶体定向性对νs?H2O光谱形态的影响表现为使低波数部分得以增强或者减弱.在系统实验观测的基础上,提出了较为可行的方解石中包裹体盐度的原位拉曼光谱测定流程,即将包裹体片旋转0°~180°获取多条拉曼光谱,经拟合处理后获得其光谱参数的平均值,而后计算流体盐度.最后,将该方法应用于地质实例分析,测定了瑶岗仙钨矿晚期热液方解石脉中的包裹体盐度,并与显微测温法进行了对比,其偏差在±5%以内.

关键词: 拉曼光谱, 方解石, 晶体定向性, 流体包裹体, 盐 度

Abstract:

Raman spectroscopy is an in situ,fast,and nondestructive analytical technique,which is widely used for qualitative description,semi?quantitative and quantitative analysis of fluid inclusion components. The Raman OH stretching band of water (νs?H2O ) shifts to higher wavenumber and becomes sharper and more symmetric with increasing NaCl concentration,which can be used to investigate the salinity of the aqueous phase inside the fluid inclusion. It should be noted that crystal orientation of the host mineral with birefringence also influences the νs?H2O band shape,which limits the application of this method to the determination of fluid salinity in natural fluid inclusions. Calcite is one of the most common host minerals of fluid inclusions. However,experimental investigations on the effects of calcite crystal orientation on νs?H2O band are lacking. In this paper,a series of fused silica capilary capsules (FSCCs) containing different concentrations of NaCl solutions were prepared. Raman spectra of these solutions were collected at room temprature and the quantitative relationship between NaCl concentration and Raman spectral parameter was established. Three calcite thin sections were prepared along the 10111121 and 0001 orientations. The calcite thin section was placed on the FSCC containing water or NaCl solution. Then,the calcite thin section was rotated clockwise for 180°; Raman spectra were collected at intervals of 15°. The effect of calcite crystal orientation on the νs?H2O band was investigated by comparing these spectra collected at different rotation degrees. This effect can be described as eihter the low wavenumber component or the high wavenumber component of νs?H2O band was enhanced.Based on these experimental investigations,a feasible method was proposed for themeasurements of the salnity of fluid inclusions hosted in calcite. It is recommended that multiple Raman spectra should be collected at intervals of 15° when fluid inclusion wafer was rotated by 180°. Then,the average value of the spectral parameter was obtained and used to calculate salinity. At last,we measured the salinity of fluid inclusions in the late hydrothermal stage calcite in vein?type tungsten deposit at Yaogangxian by applying the microthermometric and in situ Raman spectroscopyic methods. The results show that the salinity of natural calcite?hosted fluid inclusion can be measured using in situ Raman spectroscopic method. The salinity deviation obtained by these two methods was reported to be within ±5%.

Key words: Raman spectroscopy, calcite, crystal orientation, fluid inclusion, salinity

中图分类号: 

  • P61,P59

表1

标准NaCl溶液的浓度和νs?H2O谱峰拟合结果"

NaCl浓度

(wt%)

质量摩尔浓度(mol·kg-1)ν(HBS)ν(HBW)IHBSIHBWFWHMHBSFWHMHBWK′ΔK′
003209.493435.6021385.1036374.30223.83288.571.319310.00000
10.172843211.953437.9110221.2016980.20228.51283.851.337370.01737
3.50.620633215.523442.457141.0112782.50228.49276.171.480990.16099
50.900613214.773445.024942.969144.93237.36282.071.556850.23685
81.487963218.383444.588704.4518437.50218.48265.901.740440.42044
91.692353219.063444.978988.1219289.80217.63264.261.767460.44746
101.901293220.083445.719043.5619825.00215.18262.731.795430.47543
15.53.138813225.093448.5216035.9042081.80206.19249.842.165710.84571
18.653.922933226.433449.367922.7123322.00197.71246.282.363141.04314
255.703863229.543449.826998.6925727.40181.12236.982.809561.48956

图1

实验设计图(用于收集方解石薄片下标准溶液的拉曼光谱)"

图2

NaCl水溶液的OH伸展振动拉曼光谱"

图3

氯化物盐度和质量摩尔浓度标定曲线"

图4

沿不同晶面方向磨制的方解石薄片在室温条件下对3 mol·kg-1 NaCl溶液νs?H2O光谱形态的影响黑色实线为不覆盖方解石薄片的FSCC中盐水溶液的νs?H2O光谱,灰色实线为加盖沿不同晶面方向磨制的方解石薄片时收集的光谱"

图5

方解石双折射对纯水K′值的影响"

图6

瑶岗仙石英脉型黑钨矿晚期热液方解石脉中的包裹体"

图7

(a)天然方解石中流体包裹体拉曼光谱去背底流程;(b)瑶岗仙石英脉型黑钨矿晚期热液方解石中包裹体的液相拉曼光谱"

表2

瑶岗仙石英脉型黑钨矿床晚期热液方解石中流体包裹体盐度的显微测温和原位拉曼光谱测定结果"

编号

Tm.ice

(℃) a

盐度

(wt% NaCl equiv.) b

ΔK′

拉曼测定盐度

(wt% NaCl equiv.) c

误差

(%) d

1-6.19.340.458.89-4.83
2-5.38.280.428.522.92
3-5.18.000.408.020.24
4-5.68.680.438.64-0.44
5-8.211.930.6211.930.19
6-9.813.720.6913.16-4.12
1 Wang X L,Hu W X,Chou I M. Raman spectroscopic characterization on the OH stretching bands in NaCl?Na2CO3?Na2SO4?CO2?H2O systems:implications for the measurement of chloride concentrations in fluid inclusions. Journal of Geochemical Exploration,2013,132:111-119.
2 Baumgartner M,Bakker R J. Raman spectroscopy of pure H2O and NaCl?H2O containing synthetic fluid inclusions in quartz:a study of polarization effects. Mineralogy and Petrology,2009,95(1):1-15.
3 卢焕章,范宏瑞,倪培等. 流体包裹体. 北京:科学出版社,2004:1-487.
4 吕新彪,姚书振,何谋春. 成矿流体包裹体盐度的拉曼光谱测定. 地学前缘,2001,8(4):429-433.
Lü X B,Yao S Z,He M C. The determinating of the salinity of the ore?forming fluid inclusions using MLRM. Earth Science Frontiers,2001,8(4):429-433.
5 Mernagh T X,Wilde A R. The use of the laser Raman microprobe for the determination of salinity in fluid inclusions. Geochimica et Cosmochimica Acta,1989,53(4):765-771.
6 Roedder E. Fluid inclusion analysis:prologue and epilogue. Geochimica et Cosmochimica Acta,1990,54(3):495-507.
7 Frezzotti M L,Tecce F,Casagli A. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration,2012,112:1-20.
8 Dubessy J,Audeoud D,Wilkins R,et al. The use of the Raman microprobe MOLE in the determination of the electrolytes dissolved in the aqueous phase of fluid inclusions. Chemical Geology,1982,37(1-2):137-150.
9 Rosso K M,Bodnar R J. Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2. Geochimica et Cosmochimica Acta,1995,59(19):3961-3975.
10 Pasteris J D,Wopenka B,Seitz J C. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions. Geochimica et Cosmochimica Acta,1988,52(5):979-988.
11 Sun Q,Zhao L,Li N,et al. Raman spectroscopic study for the determination of Cl- concentration (molarity scale) in aqueous solutions:application to fluid inclusions. Chemical Geology,2010,272(1-4):55-61.
12 Dubessy J,Lhomme T,Boiron M C,et al. Determination of chlorinity in aqueous fluids using raman spectroscopy of the stretching band of water at room temperature:application to fluid inclusions. Applied Spectroscopy,2002,56(1):99-106.
13 Chou I M,Song Y C,Burruss R C. A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic material. Geochimica et Cosmochimica Acta,2008,72(21):5217-5231.
14 Sun Q. The raman OH stretching bands of liquid water. Vibrational Spectroscopy,2009,51(2):213-217.
15 Sun Q. Raman spectroscopic study of the effects of dissolved NaCl on water structure. Vibrational Spectroscopy,2012,62:110-114.
16 Li W S,Ni P,Pan J Y,et al. Fluid inclusion characteristics as an indicator for tungsten mineralization in the Mesozoic Yaogangxian tungsten deposit,central Nanling district,South China. Journal of Geochemical Exploration,2018,192:1-17.
17 Bodnar R J. Revised equation and table for determining the freezing point depression of H2O?NaCl solutions. Geochimica et Cosmochimica Acta,1993,57(3):683-684.
[1] 郭文文, 李福春, 吕杰杰. 赖氨酸芽孢杆菌GW-2菌株诱导碳酸盐矿物的形成[J]. 南京大学学报(自然科学版), 2019, 55(2): 309-319.
[2]  魏 滔,倪 培*,范明森,张 鑫,刘 政. 江西龙头岗铜锌矿床成矿流体研究[J]. 南京大学学报(自然科学版), 2018, 54(2): 308-.
[3] 赵丹蕾,倪 培*,朱安冬,王国光,丁俊英. 江西省德兴市渔塘金矿的流体包裹体研究[J]. 南京大学学报(自然科学版), 2018, 54(2): 322-.
[4]  陈莉莉1,倪 培1*,王国光1,李文生1,杨玉龙2.  赣南茅坪钨矿黑钨矿及共生石英中流体包裹体组合(FIA)研究[J]. 南京大学学报(自然科学版), 2018, 54(2): 336-.
[5] 顾建峰1,2,倪 培1*,李文生1,王国光1,潘君屹1,刘 政1.  安徽省池州市马头钼矿床成矿流体特征和矿床成因[J]. 南京大学学报(自然科学版), 2018, 54(2): 351-.
[6] 展恩鹏1,李红超2,徐兆文1*,赵增霞1,邱文洪1,陈 伟1. 河南省新县姚冲钼矿床成因机制研究[J]. 南京大学学报(自然科学版), 2016, 52(4): 567-.
[7] 李福春1*,郭文文1, 2. 三好氧细菌诱导碳酸矿物形成的对比研究[J]. 南京大学学报(自然科学版), 2013, 49(6): 665-.
[8] 路 睿,徐兆文,陆建军,左昌虎,赵增霞,缪柏虎. 水口山铅锌矿成因探讨[J]. 南京大学学报(自然科学版), 2013, 49(6): 732-.
[9]  陈伟,徐兆文**,李红超,陈进全,王浩,王少华
.  河南新县宝安寨铂矿床流体包裹体研究*[J]. 南京大学学报(自然科学版), 2012, 48(6): 709-718.
[10]  潘君屹,丁俊英**,倪培*.  Na2CO3 - H2O体系人工流体包裹体中
CO32-离子的显微拉曼光谱研究*
[J]. 南京大学学报(自然科学版), 2012, 48(3): 328-335.
[11]  于文1,倪培1**,王国光1,商力1,江来利2,王波华3,张怀东3
.  安徽金寨县沙坪沟
斑岩钥矿床成矿流体演化特征*
[J]. 南京大学学报(自然科学版), 2012, 48(3): 240-255.
[12]  吕赞珊1,朱筱婷1,2** 蔡逸涛1,解国爱1
.  江西永平铜矿火烧岗岩体中流体包裹体面研究*
[J]. 南京大学学报(自然科学版), 2012, 48(3): 316-327.
[13]  徐九华**,张国瑞,魏浩,林龙华,吴晓贵
.  脉状金矿床的成矿压力与深度:流体包裹体
方法及其影响因素*
[J]. 南京大学学报(自然科学版), 2012, 48(3): 266-277.
[14]  沈昆1**,张泽明2.3, Santosh M4 ,董听2
.  西藏拉萨地体冈底斯岩基紫苏花岗岩中的
高密度C02包裹体成因及其地质意义*
[J]. 南京大学学报(自然科学版), 2012, 48(3): 278-294.
[15]  牛贺才1**,罗勇2,李宁波1.3,姜玉航1.3,杨武斌1.3,单强1,于学元1
.  新疆阿吾拉勒地区查岗诺尔铁矿床铜矿化的成因探讨*
[J]. 南京大学学报(自然科学版), 2012, 48(3): 256-265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏 桐,童向荣. 基于加权启发式搜索的鲁棒性信任路径生成[J]. 南京大学学报(自然科学版), 2018, 54(6): 1161 -1170 .
[2] 关立强, 祝伟光, 李义丰. Lamb波时间反转椭圆定位和层析成像混合技术研究[J]. 南京大学学报(自然科学版), 2019, 55(2): 191 -201 .
[3] 狄 岚, 何锐波, 梁久祯. 基于可能性聚类和卷积神经网络的道路交通标识识别算法[J]. 南京大学学报(自然科学版), 2019, 55(2): 238 -250 .
[4] 徐秀芳, 徐 森, 花小朋, 徐 静, 皋 军, 安 晶. 一种基于t-分布随机近邻嵌入的文本聚类方法[J]. 南京大学学报(自然科学版), 2019, 55(2): 264 -271 .
[5] 肖梦君, 吴俊仙, 张 娜, 陈 昕, 饶泽兵, 陈允梓. VDR基因肠上皮特异性敲除小鼠的构建及其对炎症性肠病的影响[J]. 南京大学学报(自然科学版), 2019, 55(2): 332 -338 .
[6] 杨建民,于佳卉,霍王文. 区域性地面沉降形状参数c1与c2间线性关系研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 420 -428 .
[7] 罗 跃,严学新,杨天亮,叶淑君,吴吉春. 上海陆域地区地下水采灌与地面沉降的时空特征[J]. 南京大学学报(自然科学版), 2019, 55(3): 449 -457 .
[8] 王广辉,杨高东,周 政,张志炳. 丙酸异龙脑酯的合成、反应热力学和反应动力学研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 486 -497 .
[9] 郭英杰, 胡峰, 于洪, 张红亮. 基于时间粒的铝电解过热度预测模型[J]. 南京大学学报(自然科学版), 2019, 55(4): 624 -632 .
[10] 曹欣怡,李鹤,王蔚. 基于语料库的语音情感识别的性别差异研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 758 -764 .