南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (4): 665–.

• •    下一篇

利用影像技术在线追踪测量植物生长速率及其对二氧化碳的响应

朱 颖1,秦兴才1*,余晶晶1,刘晨彬2,杨玉婷2,现晓军2,陶农建1   

  • 出版日期:2018-04-30
  • 作者简介:1.南京大学化学化工学院,南京,210023;2. Center for Bioelectronics and Biosensors,The Biodesign Institute,Arizona State University,Tempe,AZ85281,United States of America
  • 基金资助:
    基金项目:国家自然科学基金(21327008,21575062),江苏省自然科学基金(BK20150574) 收稿日期:2018-05-07 *通讯联系人,E-mail:xingcai.qin@nju.edu.cn

Tracking of plant growth and its dependence on indoor carbon dioxide level with a webcam

Zhu Ying1,Qin Xingcai1*,Yu Jingjing1,Liu Chenbin2,Yang Yuting2,Xian Xiaojun2,Tao Nongjian1   

  • Online:2018-04-30
  • About author:1.School of Chemistry and Chemical Engineering,Nanjing University,Nanjing,210023,China; 2.Center for Bioelectronics and Biosensors,The Biodesign Institute,Arizona State University,Tempe,AZ85281,United States of America

摘要: 二氧化碳(CO2)是室内空气质量的重要监测指标之一,同时又是植物光合作用的原材料,与植物生长有着密切的联系. 考虑植物生长速率与CO2浓度之间的关联,利用影像技术发展在线追踪测量植物生长速率的方法,并探索利用该方法实时监测CO2浓度的可能性,建立基于植物的低成本、简单、灵敏的气体传感平台. 使用普通的网络摄像头,开发了基于matlab的、极其灵敏的光学边界跟踪方法,实时测量了活体黄豆幼苗的生长速率(下胚轴茎高增长率)及其与二氧化碳浓度(400~1700 ppm)之间的关系. 结果显示,随着二氧化碳浓度的增加,植物生长速率从400 ppm时的6 μm?min-1增加到800 ppm时的22 μm?min-1,但当浓度超过900 ppm时,生长速率却随之降低. 该方法所观察到的这种现象与文献中使用其他方法得到的结果大致相符,进一步验证了该方法的可信性. 另外,此方法成本低、简单、灵敏、无污染,无需化学药品和专门仪器,未来不仅可能应用于空气质量监测,还可以用于植物生理学和农业科学研究.

Abstract: Plant growth relies on the conversion of carbon dioxide in air to carbohydrates. Naturally,one expects that the plant growth rate depends on carbon dioxide concentration in air. Indoor air quality is of paramount importance to human health. Motivated by the possibility of monitoring indoor carbon dioxide level with potted plants,we developed a sensitive optical tracking method with a webcam to measure the growth rate(height increase in the stem)of soybean(Glycine max L.)in real time over a broad carbon dioxide concentration range,from 400 ppm to 1700 ppm. An imaging processing algorithm was developed to track the growth rate from captured images. A paper label was stuck to the stem of plant. The algorithm first plotted the image intensity profile along the hypocotyl,identified a position where the intensity profile of the marker had the largest gradient(e.g.,the edge of the paper label),and determined the vertical shift in the position(growth)from the time sequence images. Result shows the growth rate increases with carbon dioxide concentration from 6 μm?min-1 at 400 ppm to 22 μm?min-1 around 800 ppm,but decreases when the concentration exceeds 900 ppm. Our optical tracking method has the following advantages:(1)plants are cheap and available everywhere,(2)a camera can achieve real-time measurement without additional equipment,(3)this method produces no pollution and chemical reagents are not necessary.

[1] Zhu Y F,Hinds W C,Krudysz M,et al. Penetration of freeway ultrafine particles into indoor environments. Journal of Aerosol Science,2005,36(3):303-322. [2] Veteli T O,Kuokkanen K,Julkunen-Tiitto R,et al. Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Global Change Biology,2002,8(12):1240-1252. [3] Christian M,Lüthen H. New methods to analyse auxin-induced growth I:Classical auxinology goes arabidopsis. Plant Growth Regulation,2000,32(2-3):107-114. [4] Parks B M,Cho M H,Spalding E P. Two genetically separable phases of growth inhibition induced by blue light in arabidopsis seedlings. Plant Physiology,1998,118(2):609-615. [5] Pearcy R W,Ehleringer J. Comparative ecophysiology of C3 and C4 plants. Plant,Cell & Environment,1984,7(1):1-13. [6] Apte M G,Fisk W J,Daisey J M. Associations between indoor CO2 concentrations and sick building syndrome symptoms in U. S. office buildings:An analysis of the 1994-1996 base study data. Indoor Air,2000,10(4):246-257. [7] 张瑞朋,付连舜,佟 斌等. 大豆叶片光合作用与光强及二氧化碳的关系. 吉林农业科学,2015,40(3):8-13.(Zhang R P,Fu L S,Tong B,et al. The relationship of soybean leaf photosynthesis with light intensity and carbon dioxide. Journal of Jilin Agricultural Sciences,2015,40(3):8-13.) [8] Campbell W J,Allen L H,Bowes G. Response of soybean canopy photosynthesis to CO2 concentration,light,and temperature. Journal of Experimental Botany,1990,41(4):427-433. [9] Sage R F. Acclimation of photosynthesis to increasing atmospheric CO2:The gas exchange perspective. Photosynthesis Research,1994,39(3):351-368. [10] 许大全. 光合作用学. 北京:科学出版社,2013,236-237. [11] Harley P C,Weber J A,Gates D M. Interactive effects of light,leaf temperature,CO2 and O2 on photosynthesis in soybean. Planta,1985,165(2):249-263. [12] Ogren W L. Photorespiration:Pathways,regulation,and modification. Annual Review of Plant Physiology,1984,35(1):415-442. [13] Gonzalez-Meler M A,Ribas-Carbo M,Siedow J N,et al. Direct Inhibition of plant mitochondrial respiration by elevated CO2. Plant Physiology,1996,112(3):1349-1355. [14] Paul M J,Foyer C H. Sink regulation of photosynthesis. Journal of Experimental Botany,2001,52(360):1383-1400. [15] Stitt M. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant,Cell & Environment,1991,14(8):741-762. [16] Chaves M M. Effects of water deficits on carbon assimilation. Journal of Experimental Botany,1991,42(1):1-16.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!