南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (3): 637–654.

• • 上一篇    下一篇

不同城市冠层模式对城市地表能量平衡模拟能力的检验

李聪元,杨 帆,张 宁   

  • 出版日期:2018-05-23 发布日期:2018-05-23
  • 作者简介:南京大学大气科学学院,南京,210023
  • 基金资助:
    国家重点研发计划(2016YFA0600303),国家自然科学基金(41375014,41675008)

The validation on the simulation performance of different urban canopy models for urban surface energy balance

Li Congyuan, Yang Fan, Zhang Ning *   

  • Online:2018-05-23 Published:2018-05-23
  • About author:The School of Atmospheric Science, Nanjing University, Nanjing, 210023, China

摘要: 城市地表能量平衡过程模拟是城市大气边界层数值模式的关键过程之一,但目前的不同参数化的适用性和模拟性能评估工作较少。利用2013年南京市中心市区的湍流热通量的观测数据与单层冠层模式SLUCM、局地气象参数化方案LUMPS、城市能量和水平衡方案SUEWS以及公用陆面模式城市参数化方案CLMU这四个模式的模拟结果进行对比分析。分析表明:1)在能量平衡各项中,各模式对于净辐射的模拟颇好,其均方根误差普遍低于感热项的50%,潜热和储热项模拟较差。2)各模式对净辐射均有低估,其中SLUCM模式模拟最佳,全年平均偏差约7.7%,其均方根误差10-20Wm-2左右;对于感热通量,SUEWS模式模拟较好,日间偏差低于7%;对于潜热通量,则是CLMU模式更佳,特别是夏秋冬三季,平均偏差约12.5%;对于储热项,SLUCM模拟较优,偏差低于10%,各季均方根误差也普遍低于其它模式的50%。3)各模式普遍表现为:秋冬两季模拟优于春夏两季,夜间模拟比日间更佳。本文比较结果为数值模拟中城市冠层模式的选取与改进提供了参考依据。

Abstract: The simulation of urban surface energy balance process is one of the key processes of urban atmospheric boundary layer numerical model, nevertheless, there’s less work for applicability and simulation performance towards different parameterization at present. We compare the simulation results of different urban parameterization schemes consisting of The Single Layer Urban Canopy Model (SLUCM), The Local-scale Urban Meteorological Parameterization Scheme (LUMPS), The Surface Urban Energy and Water Balance Scheme (SUEWS) and The Community Land Model Urban (CLMU) model with the observed data to analyze their simulated performance for surface energy balance in Nanjing. The results illustrate that: 1)All models have a good performance for the simulation of the net radiation, the root mean square error is generally lower than 50% of the sensible heat, and the simulations of latent heat and heat storage are poorer . 2) The models underestimates the value of net radiation, among which SLUCM model simulates optimally, the annual deviation is about 7.7%, and the root mean square error is about 10-20Wm-2. The simulation of SUEWS model is better than other models for sensible heat flux. Its daytime deviation is less than 7%. As for latent heat flux, the performance of CLMU model is excellent, especially in summer, autumn and winter, the average deviation is about 12.5%. the simulation of SLUCM is 10 percent deviating from the observation of the heat storage, which implies its better representation, And it also can be find from the issue that the root mean square error is generally lower than 50% of other models. 3) In general, the simulation in winter and autumn is better than other seasons, and the nighttime characteristics of observed heat flux are more optimal reproduced comparing with daytime performance by models. The results of this paper provide a reference for the selection and improvement of urban canopy model in numerical simulation.

[1] Yang L, Tian F, Smith J A, et al. Urban signatures in the spatial clustering of summer heavy rainfall events over the Beijing metropolitan region. Journal of Geophysical Research Atmospheres, 2014, 119(3): 1203–1217. [2] 赵文静, 张宁, 汤剑平. 长江三角洲城市带降水特征的卫星资料分析[J]. 高原气象, 2011, 30(3): 668-674 .Zhao W J, Zhang N, Tang J P. 2011 Analyses on Precipitation Characteristics in the Yangtze River Delta City Belt Based on the Satellite Date. Chinese Journal of Plateau Meteorology(in Chinese) 30(3): 668-674 [3] Chen F, Yang X, Zhu W. WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmospheric Research, 2014, 138(3): 364-377. [4] Jiang Y, Liu X, Yang X Q, et al. A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmospheric Environment, 2013, 70(4): 51-63. [5] Kusaka H, Kondo H, Kikegawa Y, et al. A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models. Boundary-Layer Meteorology, 2001, 101(3): 329-358. [6] Grimmond C S B, Oke T R. Turbulent Heat Fluxes in Urban Areas: Observations and a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). Journal of Applied Meteorology, 2002, 41(7): 792-810. [7] Järvi L, Grimmond C S B, Christen A. The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver. Journal of Hydrology, 2011, 411(3):219–237. [8] Chen F, Kusaka H, Bornstein R, et al. The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 2011, 31(2): 273–288. [9] Oleson K W, Bonan G B, Feddema J, et al. An Urban Parameterization for a Global Climate Model. Part I: Formulation and Evaluation for Two Cities. Journal of Applied Meteorology & Climatology, 2008, 47(4): 1038-1060. [10] Grimmond C S B, Blackett M, Best M J, et al. The International Urban Energy Balance Models Comparison Project: First Results from Phase 1. Journal of Applied Meteorology & Climatology, 2010, 49(6): 1268-1292. [11] Grimmond C S B, Blackett M, Best M J, et al. Initial results from Phase 2 of the international urban energy balance model comparison. International Journal of Climatology, 2011, 31(2): 244-272. [12] Oleson K W, Bonan G B, Feddema J, et al. An Urban Parameterization for a Global Climate Model. Part II: Sensitivity to Input Parameters and the Simulated Urban Heat Island in Offline Simulations . Journal of Applied Meteorology & Climatology, 2008, 47(4): 1061-1076. [13] 苗世光, Chen F. 城市地表潜热通量数值模拟方法研究. 中国科学: 地球科学, 2014, 44: 1017–1025. Miao S G, Chen F. 2014. Enhanced modeling of latent heat flux from urban surfaces in the Noah/single-layer urban canopy coupled model. Journal of Science China: Earth Sciences(in Chinese) 44: 1017–1025 [14] Grimmond C S B, Cleugh H A, Oke T R. An objective urban heat storage model and its comparison with other schemes. Atmospheric Environment Part B urban Atmosphere, 1991, 25(3): 311-326. [15] Loridan T, Grimmond C S B, Offerle B D, et al. Local-Scale Urban Meteorological Parameterization Scheme (LUMPS): Longwave Radiation Parameterization and Seasonality-Related Developments. Journal of Applied Meteorology & Climatology, 2011, 50(1): 185-202. [16] Grimmond C S B, Oke T R. Heat Storage in Urban Areas: Local-Scale Observations and Evaluation of a Simple Model. Journal of Applied Meteorology, 1999, 38(7): 922-940. [17] De Bruin H A R, Holtslag A A M. A Simple Parameterization of the Surface Fluxes of Sensible and Latent Heat During Daytime Compared with the Penman-Monteith Concept. Journal of Applied Meteorology, 1982, 21(11): 1610-1621. [18] Holtslag A A M, Van Ulden A P. A Simple Scheme for Daytime Estimates of the Surface Fluxes from Routine Weather Data. Journal of Applied Meteorology, 1983, 22(4): 517-529. [19] Liu G, Sun J N. Impact of surface variations on the momentum flux above the urban canopy. Theoretical & Applied Climatology, 2010, 101(3-4): 411-419 [20] Zou J, Zhou B W, Sun J N. Impact of Eddy Characteristics on Turbulent Heat and Momentum Fluxes in the Urban Roughness Sublayer. Boundary-Layer Meteorology, 2017, (4): 1-24. [21] Zhao W J, Zhang N, Sun J N, et al. Evaluation and Parameter-Sensitivity Study of a Single-Layer Urban Canopy Model (SLUCM) with Measurements in Nanjing, China. Journal of Hydrometeorology, 2013, 15(3): 1078-1090. [22] 王国羽, 孙鉴泞, 张宏升. 城市近地层动量通量-梯度关系分析. 南京大学学报(自然科学), 2013, 49(6): 774-781.(Wang G Y, Sun J N, Zhang H S. Flux-gradient relationships for momentum in the urban surface layer. Nanjing University (Natural Sciences), 2013, 49(6): 774-781.) [23] Zou J, Liu G, Sun J J, et al. The momentum flux-gradient relations derived from field measurements in the urban roughness sublayer in three cities in China. Journal of Geophysical Research Atmospheres, 2015, 120(20): 10,797–10,809. [24] Zou J, Sun J N, Liu G, et al. Vertical Variation of the Effects of Atmospheric Stability on Turbulence Statistics Within the Roughness Sublayer Over Real Urban Canopy. Journal of Geophysical Research Atmospheres, in press, DOI: 10.1002/2017JD027041. [25] 许峰. 基于SLEUTH与WRF模式的土地利用变化对城市热环境影响研究. 硕士学论文. 南京:南京大学, 2015. (Xu F. Study on the effects of urban land use change on thermal environment based on SLEUTH and WRF models. M.D. Dissertation. Nanjing: Nanjing University. 2015) [26] Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 1980, 106(447):85-100.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!