南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (3): 597–603.

• • 上一篇    下一篇

基于多径干扰认知的汽车毫米波雷达自适应波形优化方法

许致火1*,施佺 1,2,孙玲2   

  • 出版日期:2018-05-23 发布日期:2018-05-23
  • 作者简介:1. 南通大学交通学院,南通,226019;2. 江苏省专用集成电路设计重点实验室,南通,226019
  • 基金资助:
    江苏省高等学校自然科学研究面上项目(17KJB510047),国家自然科学基金(61771265,61671255)

Adaptive millimeter-wave automotive radar waveform optimization based on learning of multi-path interference

Xu ZhiHuo1 *, Shi Quan1, Sun Ling2   

  • Online:2018-05-23 Published:2018-05-23
  • About author:1. School of Transportation, Nantong University, Nantong 226019, China; 2. Jiangsu Key Laboratory of ASIC Design, Nantong 226019, China

摘要: 随着毫米波雷达在汽车辅助驾驶系统及无人驾驶车辆中的广泛应用,在交通道路环境下工作的雷达越来越密集,其间产生的多径干扰会导致雷达出现虚假目标。为此,提出了一种基于多径干扰认知的雷达自适应抗干扰波形优化方法。首先,论文阐述了邻近的汽车雷达产生的多径干扰是一个动态随机过程,借助时变自回归模型对雷达产生的多径干扰传输信道参数的动态演变过程进行了描述,利用卡尔曼滤波对邻近雷达产生的多径干扰模型参数进行在线认知学习;然后,建立主雷达的目标回波信号与干扰信号的模型,对多径干扰信号进行白化处理;最后,基于最大化信号与干扰比(Signal to interference ratio, SIR)准则,建立抗干扰雷达信号优化模型,进行雷达波形的自适应优化更新。仿真实验结果表明所提方法可有效地抑制雷达间的强干扰。

Abstract: As millimeter wave radars (MMR) have been widely used in advanced driver assistance systems and autonomous driving vehicle to improve traffic safety, the radars may operate in a small road and in the same frequency band. Therefore, multi-path interference between different automotive radars arises, resulting in ghost targets. To deal with the emerging challenge of the multi-path interference, this paper presents an adaptive approach of MMR waveform optimization based on learning of multi-path interference. Firstly, the paper assumes that the multi-path interference follows a time-varying stochastic process; Thanks to an autoregressive model, the coefficients of the multi-path interference channels are dynamically modeled as a kind of finite impulse response; And then the parameters of the model of the neighboring multi-path interference are learnt by using a Kalman filter, based on sequential Bayesian inference. Secondly, the models of the desired radar signal and the multi-path interference are built. And the multi-path interference signals are whitening filtered. Finally, based on knowledge of the neighboring multi-path interference and a criteria of maximum signal to interference ratio (SIR), the anti-interference radar signal optimization model is generated, and therefore the MMR waveform is further optimized. The experimental results demonstrate that the proposed approach can significantly reduce neighboring multi-path interference, showing a promise for potential applications in automotive radar.

[1] Patole S M, Torlak M, Wang D, et al. Automotive radars: A review of signal processing techniques. IEEE Signal Processing Magazine, 2017, 34(2): 22-35. [2] Schipper T, Prophet S, Harter M, et al. Simulative prediction of the interference potential between radars in common road scenarios. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(3): 322-328. [3] Brooker G M. Mutual Interference of Millimeter-Wave radar systems. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(1): 170-181. [4] Imana E Y, Yang T, Reed J H. Addressing a neighboring-channel interference from high-powered radar. IEEE Transactions on Vehicular Technology, 2016, 65(5): 2872-2882. [5] Chen Z, Li H B, Cui G L, et al. Adaptive transmit and receive beamforming for interference mitigation. IEEE Signal Processing Letters, 2014, 21(2): 235-239. [6] Geng Z, Deng H, Himed B. Adaptive radar beamforming for interference mitigation in radar-wireless spectrum sharing. IEEE Signal Processing Letters, 2015, 22(4): 484-488. [7] 陈浩文, 黎湘, 庄钊文. 一种新兴的雷达体制——MIMO雷达. 电子学报, 2012, 40(6): 1190-1198. (Chen H W, Li X, Zhuang Z W. A rising radar system—MIMO radar. Acta Electronica Sinica, 2012, 40(6): 1190-1198.) [8] 王海燕, 陈浩, 张兴敢. 基于马尔可夫链的MIMO雷达信号融合检测方法. 南京大学学报(自然科学), 2016, 52(5): 918-924. (Wang H Y, Chen H, Zhang X G. MIMO radar signal fusion detection method based on Markov chain. Journal of Nanjing University (Natural Sciences), 2016, 52(5): 918-924.) [9] 陈浩, 王琼. 双基地MIMO雷达多参数联合估计及目标三维定位. 南京大学学报(自然科学), 2017, 53(3): 434-440. (Chen H, Wang Q. Multiple parameter estimation and three-dimensional localization for bistatic MIMO radar. Journal of Nanjing University (Natural Sciences), 2017, 53(3): 434-440.) [10] 倪裕豪, 倪国新, 孙晓闻等. 基于子空间投影SVD的MIMO穿墙雷达杂波抑制方法. 南京大学学报(自然科学), 2016, 52(6): 1146-1153. (Ni Y H, Ni G X, Sun X W, et al. An SVD method for clutter mitigation in MIMO Through-the-Wall Radar Imaging based on subspace projection. Journal of Nanjing University (Natural Sciences), 2016, 52(6): 1146-1153.) [11] Geng Z, Deng H. Adaptive interference and clutter rejection processing for bistatic MIMO radar. In: 2016 IEEE International Symposium on Antennas and Propagation. Fajardo, Puerto Rico: IEEE, 2016: 2055-2056. [12] 安洪亮, 夏伟杰. 随机斜率LFMCW抗汽车防撞雷达中的交叉干扰. 电子测量技术, 2012, 35(10): 59-61. (An H L, Xia W J. Countermeasures to crossed jamming using LFMCW with random slope in the automotive anti-collision radar. Electronic Measurement Technology, 2012, 35(10): 59-61.) [13] 吴鹏飞, 蔡倩, 夏伟杰等. 汽车防撞雷达中的一种抗交叉干扰方法. 机械制造与自动化, 2015, 44(2): 103-105. (Wu P F, Cai Q, Xia W J, et al. Method of countermeasures of crossed jamming in automotive anti-collision radar. Machine Building & Automation, 2015, 44(2): 103-105.) [14] Gambi E, Chiaraluce F, Spinsante S. Chaos-based radars for automotive applications: Theoretical issues and numerical simulation. IEEE Transactions on Vehicular Technology, 2008, 57(6): 3858-3863. [15] Liu T H, Hsu M L, Tsai Z M. Mutual interference of pseudorandom noise radar in automotive collision avoidance application at 24 GHz. In: 2016 5th Global Conference on Consumer Electronics. Kyoto, Japan: IEEE, 2016. [16] Tsyganova J V, Kulikova M V. SVD-based kalman filter derivative computation. IEEE Transactions on Automatic Control, 2017, 62(9): 4869-4875.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!