南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (3): 580–589.

• • 上一篇    下一篇

CaX(X=S,Se,Te)晶格热导率的第一性原理计算

郑安坤1,杜永平2*   

  • 出版日期:2018-05-23 发布日期:2018-05-23
  • 作者简介:1. 南京大学固体微结构实验室,南京,210093;2. 南京理工大学物理学院,南京,210094

First principle calculations of the lattice thermal conductivity and phonon scattering process of CaX(X=S,Se,Te)

Zheng ankun1, Du Yongping2*   

  • Online:2018-05-23 Published:2018-05-23
  • About author:1. National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 2100093, China; 2. department of physics, Nanjing University of Science & Technology,Nanjing, 210094, China

摘要: 使用第一性原理方法精确计算了CaX(X=S,Se,Te)的声子和晶格热导率等性质。并且从体系构成的异同分析了声子谱的异同。为了解释这类化合物中硫族元素从Te变为S时,热导率以及模式热导率成倍降低的原因,本文又逐个研究声子简正模式对各自热导率的贡献以及不同体系间相同模式的声子热导率的差异,进一步计算了各个独立声子模式的Grüneisen参数,散射相空间,群速度,寿命等于热导率直接相关的物理量,从这些物理量之间的差异推测造成热导率差异的根本原因。并且分析了这些物理量的差异和声子谱的联系,从声子谱的变化趋势验证了如散射相空间,声子寿命,群速度这些物理量的差异,并且也最终验证了声子散射的理论基础。本文是第一次预言CaX这一系列材料的热导率,现在尚缺乏直接实验验证。

Abstract: In this article,we present a systemic study of the phonon and thermal conductivity of alkaline earth chalcogenides CaX(X=S,Se,Te) using the pseduedo-potential plane wave method in the framework of density functional theory(DFT) and supercell method for calculating second and third order force constants. Then by using the second order force constants,we calculated the phonon spectrum ,total and partial phonon density of states of these compounds.We try to explain the similarities and differences of their phonon spectrum with the support of similarities in crystal structure of these compounds and differences in physical properties of these varying chalcogens and .Furthermore,we calculated the thermal conductivities of these compounds using third order force constants by means of anharmonic approximation of phonon scattring.We try to explain why thermal conductivities decrease multiplicatively when the chalcogen changes from S to Te from several aspects including mode dependent Grüneisen parameter,mode dependent scattering phase space and most importantly mode dependent group velocity and phonon lifetime.Finally,by comparing these values,we concluded that the difference of the thermal conductivities is mainly contributed from phonon group velocities which can be deducted from the phonon spectrum.From the value of the mode dependent scattering phase space and phonon lifetime we also proved that the phonon bandgap between acoustic and optic branches will influences the strength of self energy.This is the first time the thermal conductivities are predicted in theory,there is still lack of experimental proofs.

[1] Pandey R, Sivaraman S. Spectroscopic properties of defects in alkaline-earth sulfides. Journal of Physics and Chemistry of Solids, 1991, 52(1): 211-225. [2] Asano S, Yamashita N, Nakao Y. Luminescence of the Pb2+-Ion dimer center in CaS and CaSe phosphors. Physica Status Solidi, 1978, 89(2): 663-673. [3] Asano S, Yamashita N, Nakao Y. Luminescence of the Pb2+-Ion dimer center in CaS and CaSe phosphors. Physica Status Solidi, 1978, 89(2): 663-673. (本条文献与第2条文献重复,请核对) [4] Ruoff A L, Grzybowski T A. Solid state physics under pressure. Tokyo: Terra Scientific, 1985, 60. [5] Cortona P, Masri P. Cohesive properties and behaviour under pressure of CaS, CaSe, and CaTe: Results of ab initio calculations. Journal of Physics: Condensed Matter, 1998, 10(40): 8947-8955. doi: 10.1088/0953-8984/10/40/003. [6] Charifi Z, Baaziz H, Hassan F E H, et al. High pressure study of structural and electronic properties of calcium chalcogenides. Journal of Physics: Condensed Matter, 2005, 17(26): 4083-4092. doi: 10.1088/0953-8984/17/26/008. [7] Gupta D C, Singh K C. Effect of covalency, zero-point energy and charge transfer on the phase-transition, elastic and thermophysical properties of Ca-chalcogenides under compression. Phase Transitions, 2010, 83(3): 182-194. [8] Boucenna S, Medkour Y, Louail L, et al. High pressure induced structural, elastic and electronic properties of Calcium Chalcogenides CaX (X=S, Se and Te) via first-principles calculations. Computational Materials Science, 2013, 68: 325-334. doi: 10.1016/j.commatsci.2012.11.004. [9] Labidi S, Boudjendlia M, Labidi M, et al. First principles calculations of the structural, elastic, and thermal properties of the rocksalt CaX (X=S, Se, Te). Chinese Journal of Physics, 2014, 52(3): 1081-1090. [10]Rodríguez-Hernandez P, Radescu S, Muñoz A. Relative stability of calcium chalcogenides from ab initio theory. High Pressure Research, 2002, 22(2): 459-463. [11] Pandey R, Jaffe J E, Kunz A B. Ab initio band-structure calculations for alkaline-earth oxides and sulfides. Physical Review B, 1991, 43(11): 9228-9237. [12] Jha P K, Sanyal S P. Structural phase transformation and equations of state of calcium chalcogenides at high pressure. Physica Status Solidi, 1999, 212(2): 241-246. [13] Du Y P, Tang F, Wang D, et al. CaTe: A new topological node-line and dirac semimetal. npj Quantum Materials, 2017, 2: 3. [14] Al Rahal Al Orabi R, Mecholsky N, Hwang J P, et al. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe–CaTe alloys. In: Proceedings of the APS March Meeting. Baltimore, Maryland: APS, 2016. [15] Biswas K, He J Q, Wang G Y, et al. High thermoelectric figure of merit in nanostructured p-type PbTe-MTe (M=Ca, Ba). Energy & Environmental Science, 2011, 4(11): 4675-4684. [16] Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and Open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. [17] Hammer B, Hansen L B, Nørskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 1999, 59(11): 7413-7421. [18] Tadano T, Gohda Y, Tsuneyuki S. Anharmonic force constants extracted from first-principles molecular dynamics: Applications to heat transfer simulations. Journal of Physics: Condensed Matter, 2014, 26(22): 225402. [19] Aouissi M, Hamdi I, Meskini N, et al. Phonon spectra of diamond, Si, Ge, and α-Sn: Calculations with real-space interatomic force constants. Physical Review B, 2006, 74(5): 054302. [20] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Physical Review B, 1976, 13(12): 5188-5192. [21] Oftedal I. Die Gitterkonstanten von CaO, CaS, CaSe, CaTe. Zeitschrift für Physikalische Chemie, 1927, 128U(1): 154-158. (请核对卷号) [22] Ashcroft N W, Mermin N D. Solid state physics. Fort Worth: Saunders College Publishing, 1976, 848. [23]Parlinski K, Li Z Q, Kawazoe Y. First-principles determination of the soft mode in cubic ZrO2. Physical Review Letters, 1997, 78(21): 4063-4066. [24] Tian Z T, Garg J, Esfarjani K, et al. Phonon conduction in PbSe, PbTe, and PbTe1-xSex from first-principles calculations. Physical Review B, 2012, 85(18): 184303. [25] Zhang J Y, Kuo J L. Phonon and elastic instabilities in rocksalt calcium oxide under pressure: A first-principles Study. Journal of Physics: Condensed Matter, 2009, 21(1): 015402. [26] Reissland J A. The physics of phonons. New York: Wiley, 1973, 320. [27] Morelli D T, Slack G A. High lattice thermal conductivity solids. In: Shindé S L, Goela J S. High Thermal Conductivity Materials. Springer New York, 2006: 37-68. [28] Lindsay L, Broido D A. Three-phonon phase space and lattice thermal conductivity in semiconductors. Journal of Physics: Condensed Matter, 2008, 20(16): 165209. [29]Barron T H K, Klein M L. Dynamical properties of solids. Amsterdam: North Holland, 1974, 391. [30] Klemens P G. The thermal conductivity of dielectric solids at low temperatures (Theoretical). Proceedings of the Royal Society, Mathematical, Physical and Engineering Sciences, 1951, 208(1092): 108-133.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!