南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (3): 555–561.

• • 上一篇    下一篇

高空平台旋转对HAPS通信无线链路性能影响及抑制方法

管明祥1,王 乐1,郭 庆2   

  • 出版日期:2018-05-23 发布日期:2018-05-23
  • 作者简介:1. 深圳信息职业技术学院电子与通信学院,深圳,518172; 2. 哈尔滨工业大学电子与信息工程学院,哈尔滨,150001
  • 基金资助:
    国家自然科学基金(61401288,81401539),广东省珠江学者岗位计划(2016),教育部科技发展中心资助课题(2017A15009),深圳市科技计划(JCYJ20160608151239996)

Influence suppression of HAP’s rotation on performance of wireless link for HAPS communication

Guan Mingxiang1*, Wang Le1, GUO Qing2   

  • Online:2018-05-23 Published:2018-05-23
  • About author:1. School of Electronic and Communication, Shenzhen Institute of Information Technology, Shenzhen, 518172, China; 2. School of Electronic and Information Engineering, Harbin Institute of Technology, Harbin, 150001, China

摘要: 近年来,由高空平台构成的信息系统在通信领域的应用得到了广泛认同。高空平台站(HAPS, High Altitude Platform Stations)通信系统兼具卫星和陆地通信系统的优势,同时又有效避免了两者的缺点。高空平台不可能静止驻留在空中,平台的运动状态就会对HAPS通信无线链路性能产生关键影响。目前的研究都集中考虑平台简单运动(水平或垂直移动)或假设平台稳定,这些研究存在很大的局限性。因此,本文通过建立平台旋转状态特征参数体系,采取阵列天线设计、波束形成技术、小区覆盖与划分技术与平台状态相结合的方法,构建适合平台旋转状态下的无线链路模型,抑制平台旋转给HAPS通信链路性能带来的影响,解决高空平台旋转情况下HAPS通信无线链路存在误码、信号中断或传输信号盲区的问题,以保证无线链路性能,实现信号的可靠传输。

Abstract: Recently, high altitude platform stations (HAPS) communication system has been identified as a promising and cost-effective service in the field of telecommunication. In a HAP system which formed by high altitude platforms combines the advantages of both terrestrial and satellite communication systems, also the HAPS communication system avoids the disadvantages of both terrestrial and satellite communication systems effectively. Obviously the high altitude platform (HAP) doesn’t keep stationary all long. The state of instability of the HAP will impact the wireless link performance of HAPS communication seriously. All the research work considers that the high altitude platform moves vertically or horizontally or the high altitude platform keeps stationary. Traditional method can not eliminate influence on the wireless link performance of HAPS communication caused by the rotation of high altitude platform. Therefore, parameter characteristic system of high altitude platform’s rotation states is constructed. Wireless link models will be constructed by adopting the combination of array antenna design, beamforming technology, cell coverage and cell allocation and high altitude platform’s states. Influence suppression of high altitude platform’s rotation state on performance of wireless link of HAPS communication is realized by these wireless link models. Bit error and signal interruption in signal covering blind areas during the signal transmission will be resolved. The performance of wireless link is guaranteed and signals will be transmitted reliably.

[1] Zeng Y, Zhang R, Lim T J. Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Communications Magazine, 2016, 54(5): 36-42. [2] Lima E B, Matos S A, Costa J R, et al. Circular polarization wide-angle beam steering at Ka-band by in-plane translation of a plate lens antenna. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5443-5455. [3] Ibrahim A, Alfa A S. Using lagrangian relaxation for radio resource allocation in high altitude platforms. IEEE Transactions on Wireless Communications, 2015, 14(10): 5823-5835. [4] Alsamhi S H, Rajput N S. HAP antenna radiation pattern for providing coverage and service characteristics. In: Proceedings of 2014 International Conference on Advances in Computing, Communications and Informatics. New Delhi, India: IEEE, 2014: 1434-1439. [5] Techavijit P, Chivapreecha S, Sukchalerm P, et al. Suitable altitude for long-operated communication high altitude balloon with experimental flights. In: Proceedings of the 2016 8th International Conference on Knowledge and Smart Technology. Chiangmai, Thailand: IEEE, 2016: 169-174. [6] Pereira L S, Heckler M V T. Dual-band dual-polarized microstrip antenna for Rx/Tx terminals for high altitude platforms. In: Proceedings of the 2015 9th European Conference on Antennas and Propagation. Lisbon, Portugal: IEEE, 2015: 1-5. [7] Sharma P K, Garg P, Sharma G. The BER analysis of the high altitude platforms assisted long range cooperative communication. In: Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated Networks. Noida, India: IEEE, 2015: 296-299. [8] Wang X Y. Deployment of high altitude platforms in heterogeneous wireless sensor network via MRF-MAP and potential games. In: Proceedings of 2013 IEEE Wireless Communications and Networking Conference. Shanghai, China: IEEE, 2013: 1446-1451. [9] 游思晴, 景晓军, 齐兆群等. 基于平台摆动模型的平流层CDMA系统呼叫控制方案. 电子学报, 2011, 39(7): 1486-1490. (You S Q, Jing X J, Qi Z Q, et al. A HAPS-CDMA call control solution based on platform swinging model. Acta Electronica Sinica, 2011, 39(7): 1486-1490. ) [10] 游思晴, 景晓军, 齐兆群等. 平流层CDMA系统不同位置小区上行链路系统容量的研究及解决方案. 通信学报, 2011, 32(9): 38-43. (You S Q, Jing X J, Qi Z Q, et al. Study on HAPS-CDMA sells up-link capacity with different positions and solution. Journal on Communications, 2011, 32(9): 38-43. ) [11] Li S F, Grace D, Liu Y C, et al. Overlap area assisted call admission control scheme for communications system. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2911-2920. [12] Cai R N, Yang M C, Zhang X Q, et al. A novel multi-beam lens antenna for high altitude platform communications. In: Proceedings of the 2012 IEEE 75th Vehicular Technology Conference. Yokohama, Japan: IEEE, 2012: 1-5. [13] 牛志升, 刘嵩, 吴佑寿. 基于多建筑阻挡概率的平流层多径信道模型. 电子学报, 2004, 32(12A): 132-135. (Niu Z S, Liu S, Wu Y S. A blockage based channel model for high altitude platform communications. Acta Electronica Sinica, 2004, 32(12A): 132-135. ) [14] 管明祥, 郭庆, 顾学迈. 高空平台不稳定性对HAPS通信性能影响建模与分析. 电子学报, 2012, 40(10): 1948-1953. (Guan M X, Guo Q, Gu X M. Model and evaluation for performance effects by instability of HAP for HAPS communication. Acta Electronica Sinica, 2012, 40(10): 1948-1953. ) [15] 管明祥, 郭庆, 顾学迈. HAPS通信覆盖及链路特性分析. 电波科学学报, 2012, 27(4): 832-839. (Guan M X, Guo Q, Gu X M. Performance evaluation of coverage and wireless link characteristic for HAPS communication. Chinese Journal of Radio Science, 2012, 27(4): 832-839. ) [16] 管明祥, 王乐, 郭庆. HAPS通信多层环形小区结构设计. 北京邮电大学学报, 2014, 37(2): 48-52. (Guan M X, Wang L, Guo Q. Multi-layer ring cellular structure for HAPS communication. Journal of Beijing University of Posts and Telecommunications, 2014, 37(2): 48-52. )
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!