南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (3): 538–542.

• • 上一篇    下一篇

压缩感知重构SAMP的改进算法

杨 韧,张兴敢1*   

  • 出版日期:2018-05-23 发布日期:2018-05-23
  • 作者简介:南京大学电子科学与工程学院,南京,210023
  • 基金资助:
    江苏省基础研究计划 [BK20151397]

An improved algorithm based on sparsity adaptive matching pursuit

Yang Ren,Zhang Xinggan*   

  • Online:2018-05-23 Published:2018-05-23
  • About author:School of Electronics Science and Engineering,Nanjing University,Nanjing ,210023,China

摘要: 压缩感知提供了一种用于采集在正交基上稀疏的信号的新范式,突破了奈奎斯特采样定理对采样率的的限制,提高了采样端的效率。国内外学者已经探索出大量过完备词典,能够有效对信号稀疏化采集并且尽量不丢失原信号中所含信息。压缩采样中的主要算法挑战是从观测样本中重构原信号。本文提出一种称为稀疏度自适应匹配追踪算法(SAMP)的迭代恢复算法的改进方法。相比较于原算法的方案,该方法回避了对原信号稀疏度的过估计,采用了在过估计时回溯稀疏度,并调整步长的方法,解决了原方案中恢复速度和恢复精度的矛盾。通过仿真实验比较了在不同稀疏度和采样率的情况下两种算法的精确重构成功率,结果证明了改进算法明显优于原算法。

Abstract: Compressive sensing offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to reconstruct the original signal from the observed sample. The time-frequency and time-scale communities have developed a large number of overcomplete waveform dictionaries --- stationary wavelets, wavelet packets, cosine packets, chirplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for decomposition have been proposed, including the method of frames (MOF), Matching pursuit (MP), and, for special dictionaries, the best orthogonal basis (BOB).This paper describes a improve proposal of the iterative recovery algorithm called sparsity adaptive matching pursuit (SAMP) that delivers the same guarantees as the best optimization-based approaches. Sparsity adaptive matching pursuit adopts fixed-step in the iteration which causes over-estimated, therefore, according to the variation of the energy residual error between adjacent signals, “variable steps” during the iteration is used in the improved algorithm, namely, a large step size is used at the initial stage, and then becomes smaller. Compared with the original algorithmic, this proposal avoids the over estimation of the sparseness of the original signal. Moreover, the proposal solves the contradiction between the recovery precision and the recovery speed that exists in the original algorithm.

[1] Candès E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. [2] Kakumanu P, Makrogiannis S, Bourbakis N. A survey of skin-color modeling and detection methods. Pattern Recognition, 2007, 40(3): 1106-1122. [3] Vezhnevets V, Sazonov V, Andreeva A. A survey on pixel-based skin color detection techniques. In: Proceedings of the International Conference Graphicon 2003. Moscow, Russia: Moscow State University, 2003: 85-92. [4] Tan W R, Chan C S, Yogarajah P, et al. A fusion approach for efficient human skin detection. IEEE Transactions on Industrial Informatics, 2012, 8(1): 138-147. [5] Angelopoulou E. Understanding the color of human skin. In: Proceedings of the SPIE Volume 4299, Human Vision and Electronic Imaging VI. San Jose, CA, USA: SPIE, 2001, 4299: 243-251. [6] Hsu R L, Abdel-Mottaleb M, Jain A K. Face detection in color images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 696-706. [7] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. [8] Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics, 2009, 9(3): 317-334. [9] Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121. [10] Needell D, Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321. [11] Plonka G, Ma J W. Curvelet-wavelet regularized split bregman iteration for compressed sensing. International Journal of Wavelets, Multiresolution and Information Processing, 2011, 9(1): 79-110. [12] Mallat S G, Zhang Z F. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. [13] Tropp J A. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 2004, 50(10): 2231-2242. [14] 石光明, 刘丹华, 高大化等. 压缩感知理论及其研究进展. 电子学报, 2009, 37(5): 1070-1081. (Shi G M, Liu D H, Gao D H, et al. Advances in theory and application of compressed sensing. Acta Electronica Sinica, 2009, 37(5): 1070-1081.) [15] Wang R, Zhang J L, Ren S L, et al. A reducing iteration orthogonal matching pursuit algorithm for compressive sensing. Tsinghua Science and Technology, 2016, 21(1): 71-79. [16] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!