南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (1): 212–.

• • 上一篇    

 锌(Ⅱ)-甘氨酸-水三元配合物结构和性质的理论研究

 孟祥军*,石 瑾,赵红丽,李亚文   

  • 出版日期:2018-01-31 发布日期:2018-01-31
  • 作者简介: 唐山师范学院化学系,唐山,063000
  • 基金资助:
     基金项目:唐山师范学院科研基金(2017B02),唐山师范学院化学系大学生创新项目(CX201603)
    收稿日期:2017-05-23
    *通讯联系人,E-mail:xjmeng_1974@126.com

 Theoretical study on structure and properties of ternary complexes [Zn(Glym)(H2O)n]2+

 Meng Xiangjun*,Shi Jin,Zhao Hongli,Li Yawen   

  • Online:2018-01-31 Published:2018-01-31
  • About author: Department of Chemistry,Tangshan Normal University,Tangshan,063000,China

摘要:  采用CCSD//M06/6-31++G**理论方法系统研究了三元配合物[Zn(Glym)(H2O)n]2+的结构和性质.气相模型下得到的结果为:(1)1个O,O双啮型两性甘氨酸分子比1个N,O双啮型中性甘氨酸分子的配位能力强9.7 kJ·mol-1,比2个水分子强55.0 kJ·mol-1;(2)O,O双啮型两性甘氨酸优先与Zn2+配位,结合能为-810.4 kJ·mol-1;增加的前2个水分子与Zn2+直接配位最稳定;第3个水分子则插入到甘氨酸O原子和Zn2+之间得到最稳定结构;然后第4和第5个水分子继续和Zn2+配位.液相模型下的构型结构与气相结果近似,能量次序与气相结果相同.

Abstract:  A CCSD//M06/6-31++G** method was used to systematically investigate the structure and properties of ternary complexes [Zn(Glym)(H2O)n]2+.The results obtained under the gas-phase model are as follows:(1)Coordination ability of the zwitterion glycine molecule(coordination sites are two O atoms)is stronger by 9.7 kJ·mol-1 than that of the neutral glycine molecule(coordination sites are the N and O atoms),and is stronger by 55.0 kJ·mol-1 than that of two water molecules.(2)The bidentate glycine with O,O coordination sites preferentially coordinates with Zn2+,and the binding energy is -810.4 kJ·mol-1.Direct coordination of the first two increased water molecules and Zn2+ is the most stable.However,when the third water molecule is inserted between the O atom of glycine and Zn2+,the resulting structure is the most stable.Then the fourth and fifth water molecules continue to coordinate with Zn2+.The structure of each conformation of liquid-phase model is similar to that of the gas-phase,and the energy order is also the same.

 [1] 田善喜.氨基酸分子构象稳定性与光电离解离动力学的氢键效应.化学进展,2009,21(4):600-605.(Tian S X.Hydrogen bonding effects on conformational stabilities and dissociative photoionization dynamics of amino acids.Progress in Chemistry,2009,21(4):600-605.)
[2] 钟 亮,胡勇军,邢 达等.生物分子的微溶剂化过程.化学进展,2010,22(1):1-8.(Zhong L,Hu Y J,Xing D,et al.Microsolvation process of biomolecules.Progress in Chemistry,2010,22(1):1-8.)
[3] Csaszar A G.Conformers of gaseous glycine.Journal of the American Chemical Society,1992,114(24):9568-9575.
[4] Balabin R M.Conformational equilibrium in glycine:Focal-point analysis and ab initio limit.Chemical Physics Letters,2009,479(4-6):195-200.
[5] Stepanian S G,Reva I D,Radchenko E D,et al.Matrix-isolation infrared and theoretical studies of the glycine conformers.The Journal of Physical Chemistry A,1998,102(6):1041-1054. 
[6] Balabin R M.Experimental thermodynamics of free glycine conformations:The first Raman experiment after twenty years of calculations.Physical Chemistry Chemical Physics,2011,14(1):99-103.
[7] 孟祥军.甘氨酸构象异构化机理的密度泛函理论研究.南开大学学报(自然科学版),2013,46(3):15-22.(Meng X J.Density function theoretical study on isomerization reaction mechanism of glycine.Acta Scientiarum Naturalium University Nankaiensis,2013,46(3):15-22.)
[8] Kim J Y,Im S,Kim B,et al.Structures and energetics of Gly-(H2O)5:Thermodynamic and kinetic stabilities.Chemical Physics Letters,2008,451(4-6):198-203.
[9] Ke H W,Rao L,Xu X,et al.Density functional theory study of 1∶1 glycine-water complexes in the gas phase and in solution.Science China Chemistry,2010,53(2):383-395.
[10] Bachrach S M.Microsolvation of glycine:A DFT study.The Journal of Physical Chemistry A,2008,112(16):3722-3730.
[11] Meng X J,Zhao H L,Ju X S.Influences of n(2-5) water molecules on the proton transfer in hydrated glycine complexes.Computational and Theoretical Chemistry,2012,1001:26-32.
[12] Hidenori M,Misako A.Ab initio QM/MM-MC study on hydrogen transfer of glycine tautomerization in aqueous solution:Helmholtz energy changes along water-mediated and direct processes.Chemistry Letters,2013,42(6):598-600. 
[13] Yang G,Zhu R X,Zhou L J,et al.Interactions of Zn(Ⅱ)with single and multiple aminoacids.Insights from density functional and ab initio calculations.Journal of Mass Spectrometry,2012,47(10):1372-1383.
[14] Khodabandeh M H,Reisi H,Davari M D,et al.Interactionmodes and absolute affinities of α-amino acids for Mn2+:A comprehensive picture.Chem Phys Chem,2013,14(8):1733-1745.
[15] Bowman V N,Heaton A L,Armentrout P B.Metal cation dependence of interactions with amino acids:Bond energies of Rb+ to Gly,Ser,Thr,and Pro.The Journal of Physical Chemistry B,2010,114(11):4107-4114.
[16] Armentrout P B,Yang B,Rodgers M T.Metal cation dependence of interactions with amino acids:Bond dissociation energies of Rb+ and Cs+ to the acidic amino acids and their amide derivatives.The Journal of Physical Chemistry B,2014,118(16):4300-4314.
[17] 孟祥军,石 瑾.Mg2+诱导丙氨酸质子迁移机理的理论研究.南京大学学报(自然科学),2017,53(1):199-207.(Meng X J,Shi J.Theoretical study on proton transfer mechanism ofalanine induced by Mg2+.Journal of Nanjing University(Natural Science),2017,53(1):199-207.)
[18] Zhang Q,Meng X J.The mechanisms of α-H and protontransfers of glycine induced by Mg2+.Journal of Theoretical and Computational Chemistry,2015,14(2):155008.
[19] Remko M,Rode B M.Effect of metal ions(Li+,Na+,K+,Mg2+,Ca2+,Ni2+,Cu2+,and Zn2+)and water coordination on the structure of glycine and zwitterionic glycine.The Journal of Physical Chemistry A,2006,110(5):1960-1967.
[20] Johnson B G,Gill P M W,Pople J A.The performance of a family of density functional methods.The Journal of Chemical Physics,1993,98(7):5612-5626.
[21] Sousa S F,Fernandes P A,Ramos M J.General performanceof density functionals.The Journal of Physical Chemistry A,2007,111(42):10439-10452. 
[22] Zhao Y,Truhlar D G.The M06 suite of density functionals for main group thermochemistry,thermochemical kinetics,noncovalent interactions,excited states,and transition elements:Two new functionals and systematic testing of four M06-class functionals and 12 other functionals.Theoretical Chemistry Accounts,2008,120(1-3):215-241.
[23] 孙 涛,王一波.用GGA密度泛函及其长程、色散校正方法计算各类氢键的结合能.物理化学学报,2011,27(11):2553-2558.(Sun T,Wang Y B.Calculation of the binding energies of different types of hydrogen bonds using GGA density functional and its long-range,empirical dispersion correction methods.Acta Physico-Chimica Sinica,2011,27(11):2553-2558.)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!