南京大学学报(自然科学版) ›› 2017, Vol. 53 ›› Issue (5): 860–.

• • 上一篇    下一篇

 基于耦合模型的沙颍河流域地下水与地表水硝酸盐通量过程模拟

 陈志慧,阮晓红*,单 楠   

  • 出版日期:2017-09-25 发布日期:2017-09-25
  • 作者简介: 南京大学地球科学与工程学院水科学系,南京,210023
  • 基金资助:
     基金项目:国家水体污染控制与治理科技重大专项(2012ZX07204-003)
    收稿日期:2017-05-31
    *通讯联系人,E-mail:ruanxh@nju.edu.cn

 Modeling of nitrate flux between groundwater and surface water based on a coupled model in Shaying River Basin

 Chen Zhihui,Ruan Xiaohong*,Shan Nan   

  • Online:2017-09-25 Published:2017-09-25
  • About author: Department of Water Sciences,School of Earth Sciences and Engineering,Nanjing University,Nanjing,210023,China

摘要:  为定量解析沙颍河流域地下水与地表水硝酸盐通量过程,构建了SWAT,MODFLOW和MT3DMS耦合模型,利用2007-2012年水量水质观测数据对模型进行了校验.校验结果表明,地表水流量决定系数R2大于0.68,地下水水位和地表水水质R2均大于0.9,地下水水质相对误差Re在15%以内,符合模型精度要求.在此基础上,选择沙颍河流域探究了流域地表水与地下水补排关系和硝酸盐通量过程.结果表明,沙颍河流域地表水与地下水的补排关系主要表现为地下水补给地表水,年均净补给水量约3.18×108 m3.年际表现为丰水年大,达15.2×108 m3,枯水年小,仅为0.26×108 m3;年内表现为汛期地表水补给地下水,枯期地下水补给地表水;空间上表现为流域中上游(沙河、颍河中上游和汾泉河)地区大,年均值可达2.53×108 m3.流域地下水对地表水年均硝酸盐净补给量0.38万吨,表现为,年内秋冬季净贡献量大,占总净贡献量的81.6%;空间上表现为流域上游地区净贡献量大,占总净贡献量的87.4%.流域中下游地区净贡献量小,占总净贡献量的12.6%.

Abstract:  In order to quantitatively analyze the nitrate flux process between groundwater and surface water in Shaying River Basin,the coupled model of SWAT,MODFLOW and MT3DMS was constructed.The model was calibrated and verified by the observation data of water quantity and water quality during 2007-2012.The results show that coefficients of the surface water flow,surface water quality and groundwater levels are greater than 0.68,0.9 and 0.9 respectively,and the coefficient of determination for groundwater quality is within 15%,which meet the requirements of model accuracy.On this basis,relationship of recharge and discharge,as well as nitrate flux process between surface water and groundwater was explored in Shaying River Basin.The results indicate that groundwater mainly recharges surface water in the research area.The average annual net water recharge is about 318 million m3.The annual water flux in wet years is large,which can reach 1.52 billion m3,and in dry years is small with an annual average value of 0.026 billion m3.Generally,surface water recharges groundwater in the flood season,and the other way around in the dry season.For the upper and middle regions(Sha River,middle of Ying River and Fenquan River watershed),the average annual value is large,which can be up to 253 million m3.The average annual net nitrate recharge is 3800 tons.Nitrate flux from groundwater to surface water can account for 81.6% of total nitrate flux in autumn and winter.In the space,the net nitrate flux from groundwater to surface water of the upper reaches of the basin is large,accounting for 87.4% of the total net nitrate flux.The net nitrate flux in the middle and lower reaches is small,accounting for 12.6% of the total net nitrate flux of the basin.

 

[1] Levy J,Xu Y X.Review:Groundwater management and groundwater/surface-water interaction in the context of South African water policy.Hydrogeology Journal,2012,20(2):205-226.
[2] 徐力刚,张 奇,左海军.地表水地下水的交互与耦合模拟研究现状与进展.水资源保护,2009,25(5):82-85,102.(Xu L G,Zhang Q,Zuo H J.Status and progress of research on interaction and coupled modeling of surface water and groundwater.Water Resources Protection,2009,25(5):82-85,102.)
[3] Freeze R A,Haran R L.Blue-print for a physically-based,digitally-simulated hydrologic response model.Journal of Hydrology,1969,9(3):237-258.
[4] 王加虎,李 丽,李新红.“四水”转化研究综述.水文,2008,28(4):5-8.(Wang J H,Li L,Li X H.Study on transformation among atmosphere water,surface water,soil water and ground water.Journal of China Hydrology,2008,28(4):5-8.)
[5] 刘 锦,李 慧,方 韬等.淮河中游北岸地区“四水”转化研究.自然资源学报,2015,30(9):1570-1581.(Liu J,Li H,Fang T,et al.Study on the “Four-water” transformation on north shore of middle reaches of the Huaihe River.Journal of Natural Resources,2015,30(9):1570-1581.)
[6] 张浩佳,吴剑锋,林 锦等.GSFLOW在干旱区地表水与地下水耦合模拟中的应用.南京大学学报(自然科学),2015,51(3):596-603.(Zhang H J,Wu J F,Lin J,et al.Application of GSFLOW to the modeling of groundwater-surface water interaction in an arid watershed.Journal of Nanjing University(Natural Sciences),2015,51(3):596-603.)
[7] Kim N W,Chung I M,Won Y S,et al.Development and application of the integrated SWAT-MODFLOW model.Journal of Hydrology,2008,356(1-2):1-16.
[8] Chung I M,Lee J,Kim N W,et al.Estimating exploitable amount of groundwater abstraction using an integrated surface water-groundwater model:Mihocheon watershed,South Korea.Hydrological Sciences Journal,2015,60(5):863-872.
[9] Guzman J A,Moriasi D N,Gowda P H,et al.A model integration framework for linking SWAT and MODFLOW.Environmental Modelling & Software,2015,73:103-116.
[10] Izady A,Davary K,Alizadeh A,et al.Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain,Iran.Hydrogeology Journal,2015,23(1):47-68.
[11] Li Q,Qi J Y,Xing Z S,et al.An approach for assessing impact of land use and biophysical conditions across landscape on recharge rate and nitrogen loading of groundwater.Agriculture,Ecosystems & Environment,2014,196:114-124.
[12] Pulido-Velazquez M,Pea-Haro S,García-Prats A,et al.Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha Oriental system(Spain).Hydrology and Earth System Sciences,2015,19(4):1677-1693.
[13] Narula K K,Gosain A K.Modeling hydrology,groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna Basin.Science of the Total Environment,2013,468-469 Suppl:S102-S116.
[14] Keilholz P,Disse M,Halik ü.Effects of land use and climate change on groundwater and ecosystems at the middle reaches of the Tarim River using the MIKE SHE integrated hydrological model.Water,2015,7(6):3040-3056. 
[15] 刘路广,崔远来.灌区地表水-地下水耦合模型的构建.水利学报,2012,43(7):826-833.(Liu L G,Cui Y L.Construction of integrated surface water and groundwater model for irrigation area.Journal of Hydraulic Engineering,2012,43(7):826-833.)
[16] 马天海,徐 静,单 楠等.贾鲁河流域旱作农业区非点源氮污染负荷分布规律及其影响因素研究.南京大学学报(自然科学),2016,52(1):77-85.(Ma T H,Xu J,Shan N,et al.The Study on distribution of dry farming agricultural non-point source pollution load and influencing factors in Jialu River Watershed.Journal of Nanjing University(Natural Sciences),2016,52(1):77-85.) 

[17] 郑倩琳,王妍妍,闫雅妮等.淮河流域浅层地下水氮污染阻断优先控制区识别.南京大学学报(自然科学),2016,52(1):103-114.(Zheng Q L,Wang Y Y,Yan Y N,et al.Identification of prior control areas for nitrogen pollution blocking in shallow groundwater in Huai River Basin.Journal of Nanjing University(Natural Sciences),2016,52(1):103-114.)
[18] 张多纯,张幼宽.GSFLOW在沙颖河流域地表水与地下水联合模拟的应用.水文地质工程地质,2015,42(2):1-9.(Zhang D C,Zhang Y K.Application of GSFLOW to a coupled surface water and groundwater model for Shaying River Basin.Hydrogeology and Engineering Geology,2015,42(2):1-9.)
[19] 张 嘉,王明玉.纵向弥散作用与渗透介质非均质性定量关系的模拟研究.地学前缘,2010,17(6):152-158.(Zhang J,Wang M Y.Investigation of the relation between longitudinal dispersion and heterogeneity using the numerical simulation approach.Earth Science Frontiers,2010,17(6):152-158.)
[20] 张多纯,张幼宽.城镇化和闸坝对沙颍河流量的影响.南水北调与水利科技,2014,12(4):6-10,15.(Zhang D C,Zhang Y K.Impacts of urbanization and dams on river runoff in the Shaying River Basin.South to North Water Transfers and Water Science & Technology,2014,12(4):6-10,15.)

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!