南京大学学报(自然科学版) ›› 2017, Vol. 53 ›› Issue (5): 823–.

• •    下一篇

天然闪锌矿光催化还原二氧化碳实验研究

刘 熠,李 艳*,黎晏彰,鲁安怀,丁竑瑞,王长秋   

  • 出版日期:2017-09-25 发布日期:2017-09-25
  • 作者简介: 造山带与地壳演化教育部重点实验室,矿物环境功能北京市重点实验室,北京大学地球与空间科学学院,北京,100871
  • 基金资助:
     基金项目:国家自然科学基金(41230103,41522201,41272003),国家重点基础研究发展计划(973项目)(2014CB846001)
    收稿日期:2017-05-23
    *通讯联系人,E-mail:liyan-pku@163.com

 Experimental study of photocatalytic reduction of carbon dioxide on natural sphalerite

 Liu Yi,Li Yan*,Li Yanzhang,Lu Anhuai,Ding Hongrui,Wang Changqiu   

  • Online:2017-09-25 Published:2017-09-25
  • About author: Key Laboratory of Orogenic Belts and Crustal Evolution,Beijing Key Laboratory of Mineral Environmental Function,School of Earth and Space Sciences,Peking University,Beijing,100871,China

摘要:  利用电子探针(EPMA),X射线光电子能谱(XPS),拉曼光谱(Raman)和紫外可见漫反射(UV-vis DRS)对天然闪锌矿成分、物相与能带结构进行了表征,发现Fe,Cu,Ga等杂质金属可抬升闪锌矿价带能级位置,减小禁带宽度,并在其禁带中引入施主与受主能级,增强闪锌矿的光吸收范围.在pH为6的厌氧条件下,光照9 h后天然闪锌矿光催化还原CO2产生的甲酸浓度达到12 mg·L-1,高于合成ZnS的10 mg·L-1.当NaH2PO2与Na2S作为复合空穴捕获剂时,CO2光催化还原速率较由Na2S作为空穴捕获剂的体系提升45%.在此基础上,根据实验介质环境下闪锌矿表面荷电特性,探讨了闪锌矿对CO2的吸附方式影响CO2还原效率并降低CO2转化为CO-2阴离子能垒的微观机制.研究结果可扩展天然半导体矿物作为低成本、大产量光催化剂在CO2有机转化领域的应用范围.

Abstract:  The chemical composition,mineral phase and band structure were analyzed by electron probe micro-analyzer(EPMA),Raman,X-ray photoelectron spectroscopy(XPS) and UV-vis diffuse reflectance spectroscopy(UV-vis DRS).The dopants including Fe,Cu,Ga raised valence band position and introduced donor level and acceptor level to band structure of natural sphalerite,expanding the light absorption range.In weak acidic and anaerobic solution,the yield of HCOOH photo-reduced by natural sphalerite was 12 mg·L-1 after irradiation for 9 h,higher than synthetic ZnS.The synergistic effect in the use of both NaH2PO2 and Na2S as hole scavenger was also discussed.According to the point of zero charge(PZC)of sphalerite,a micro mechanism was proposed to reveal the process of photocatalytic reduction on natural sphalerite surface.Our research might explore the application of natural semiconducting minerals as cost-effective photocatalysts and provide direction to accelerate photoreduction of CO2 by surface modification.

[1] Tseng I H,Chang W C,Wu J C S.Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts.Applied Catalysis B:Environmental,2002,37(1):37-48.
[2]  Habisreutinger S N,Schmidt-Mende L,Stolarczyk J K.Photocatalytic reduction of CO2 on TiO2 and other semiconductors.Angewandte Chemie International Edition,2013,52(29):7372-7408.
[3]  吴聪萍,周 勇,邹志刚.光催化还原CO2的研究现状和发展前景.催化学报,2011,32(10):1565-1572.(Wu C P,Zhou Y,Zou Z G.Research progress in photocatalytic conversion of CO2 to hydrocarbons.Chinese Journal of Catalysis,2011,32(10):1565-1572.)
[4]  Halmann M.Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells.Nature,1978,275(5676):115-116.
[5]  Izumi Y.Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond.Coordination Chemistry Reviews,2013,257(1):171-186.
[6]  Kondratenko E V,Mul G,Baltrusaitis J,et al.Status and perspectives of CO2 conversion into fuels and chemicals by catalytic,photocatalytic and electrocatalytic processes.Energy & Environmental Science,2013,6(11):3112-3135. 
[7]  Li Y,Wang W N,Zhan Z L,et al.Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts.Applied Catalysis B:Environmental,2010,100(1-2):386-392.
[8]  Ahmed N,Morikawa M,Izumi Y.Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts.Catalysis Today,2012,185(1):263-269.
[9]  Lee D S,Chen H J,Chen Y W.Photocatalytic reduction of carbon dioxide with water using InNbO4 catalyst with NiO and Co3O4 cocatalysts.Journal of Physics and Chemistry of Solids,2012,73(5):661-669.
[10]  Li P Q,Hu H T,Xu J F,et al.New insights into the photo-enhanced electrocatalytic reduction of carbon dioxide on MoS2-rods/TiO2 NTs with unmatched energy band.Applied Catalysis B:Environmental,2014,147:912-919.
[11]  鲁安怀.矿物环境属性与无机界天然自净化功能.矿物岩石地球化学通报,2002,21(3):192-197.(Lu A H.Environmental properties of minerals and natural self-purification of inorganic minerals.Bulletin of Mineralogy,Petrology and Geochemistry,2002,21(3):192-197.)
[12]  鲁安怀.无机界矿物天然自净化功能之矿物光催化作用.岩石矿物学杂志,2003,22(4):323-331.(Lu A H.Mineralogical photocatalysis in natural self-purification of inorganic minerals.Acta Petrologica et Mineralogica,2003,22(4):323-331.)
[13]  Li Y,Lu A H,Wang C Q.Photocatalytic reduction of CrVI by natural sphalerite suspensions under visible light irradiation.Acta Geologica Sinica,2006,80(2):267-272.
[14]  Li Y,Lu A H,Jin S,et al.Photo-reductive decolorization of an azo dye by natural sphalerite:Case study of a new type of visible light-sensitized photocatalyst.Journal of Hazardous Materials,2009,170(1):479-486.
[15]  Yang X G,Li Y,Lu A H,et al.Photocatalytic reduction of carbon tetrachloride by natural sphalerite under visible light irradiation.Solar Energy Materials and Solar Cells,2011,95(7):1915-1921.
[16]  Xu Y,Schoonen M A A.The absolute energy positions of conduction and valence bands of selected semiconducting minerals.American Mineralogist,2000,85(3-4):543-556.
[17]  Hope G A,Woods R,Munce C G.Raman microprobe mineral identification.Minerals Engineering,2001,14(12):1565-1577.
[18]  Jiménez-Sandoval S,López-Rivera A,Irwin J C.Influence of reduced mass differences on the Raman spectra of ternary mixed compounds:Zn1-xFexS and Zn1-xMnxS.Physical Review B,2003,68(5):054303-1-054303-9.
[19]  丁 聪,李 艳,鲁安怀.掺杂Fe、Cd闪锌矿电子结构的第一性原理计算.岩石矿物学杂志,2015,34(3):382-386.(Ding C,Li Y,Lu A H.The electronic structures of Fe-and Cd-doped sphalerite ZnS from first principles calculations.Acta Petrologica et Mineralogica,2015,34(3):382-386.)
[20]  李迪恩,彭明生.闪锌矿的标型特征、形成条件与电子结构.矿床地质,1989,8(3):75-82.(Li D E,Peng M S.The typomorphic features,formation conditions and electronic structure of sphalerite.Mineral Deposits,1989,8(3):75-82.) 
[21]  吴 婧,李 艳,巫 翔等.天然可见光催化剂闪锌矿半导体电子结构的第一性原理计算.矿物学报,2012(S1):56-57.
[22]  Taniguchi M,Ley L,Johnson R L,et al.Synchrotron radiation study of Cd1-xMnxTe(0≤x≤0.65).Physical Review B,1986,33(2):1206-1212.
[23]  龙明策,蔡 俊,蔡伟民等.设计新型可见光响应的半导体光催化剂.化学进展,2006,18(9):1065-1075.(Long M C,Cai J,Cai W M,et al.Design of novel visible light responding semiconductor photocatalysts.Progress in Chemistry,2006,18(9):1065-1075.)
[24]  Huang J M,Yang Y,Xue S H,et al.Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks.Applied Physics Letters,1997,70(18):2335-2337. 
[25]  Baltrusaitis J,Patterson E V,Hatch C.Computational studies of CO2 activation via photochemical reactions with reduced sulfur compounds.The Journal of Physical Chemistry A,2012,116(37):9331-9339.
[26]  Kanemoto M,Shiragami T,Pac C,et al.Semiconductor photocatalysis.13.Effective photoreduction of carbon dioxide catalyzed by zinc sulfide quantum crystallites with low density of surface defects.The Journal of Physical Chemistry,1992,96(8):3521-3526.
[27]  Lo C C,Hung C H,Yuan C S,et al.Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor.Solar Energy Materials and Solar Cells,2007,91(19):1765-1774.

[28]  Xia X H,Jia Z J,Yu Y,et al.Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O.Carbon,2007,45(4):717-721.
[29]  He H Y,Zapol P,Curtiss L A.A theoretical study of CO2 anions on anatase(101)surface.The Journal of Physical Chemistry C,2010,114(49):21474-21481.
[30]  He H Y,Zapol P,Curtiss L A.Computational screening of dopants for photocatalytic two-electron reduction of CO2 on anatase(101)surfaces.Energy & Environmental Science,2012,5(3):6196-6205.
[31]  Yin W J,Krack M,Wen B,et al.CO2 capture and conversion on rutile TiO2(110)in the water environment:insight by first-principles calculations.The Journal of Physical Chemistry Letters,2015,6(13):2538-2545.
[32]  Shchurov A F,Gavrishchuk E M,Ikonnikov V B,et al.Effect of hot isostatic pressing on the elastic and optical properties of polycrystalline CVD ZnS.Inorganic Materials,2004,40(4):336-339.
[33]  Zang L,Liu C Y,Ren X M.Photochemistry of semiconductor particles 3.Effects of surface charge on reduction rate of methyl orange photosensitized by ZnS sols.Journal of Photochemistry and Photobiology A:Chemistry,1995,85(3):239-245.
[34]  Wang Y,Zhao J,Wang T F,et al.CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts:Surface species and their reactivity.Journal of Catalysis,2016,337:293-302.
[35]  Zhou R X,Guzman M I.CO2 reduction under periodic illumination of ZnS.The Journal of Physical Chemistry C,2014,118(22):11649-11656.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!