南京大学学报(自然科学版) ›› 2017, Vol. 53 ›› Issue (3): 610–.

• • 上一篇    

高效光催化转化CO2为CH4的纳米Zn2GeO4的简易合成

万丽娟1,2,杨 明3*   

  • 出版日期:2017-05-30 发布日期:2017-05-30
  • 作者简介:1. 南京交通职业技术学院,南京,211188;2. 江苏省交通节能减排工程技术研究中心,南京,211188;3. 东南大学交通学院,南京,210096
  • 基金资助:
    Foundation Item:Natural Science Research Project of Jiangsu Higher Education Institutions(16KJD610004),National Natural Science Foundation of China(51208102),High­level Scientific Research Foundation for the Introduction of Talent of Nanjing Vocational Institute of Transport Technology Received Date:2016-12-24 *Corresponding Author,E­mail:bartty_ym@sina.com

Facile synthesis of nano­Zn2GeO4 for efficient photocatalytic conversion of CO2 into CH4

Wan Lijuan1,2,Yang Ming3*   

  • Online:2017-05-30 Published:2017-05-30
  • About author:1.Nanjing Vocational Institute of Transport Technology,Nanjing,211188,China; 2.Jiangsu Engineering Technology Research Center for Energy Conservation and Emission Reduction of Transportation,Nanjing,211188,China;3.School of Transportation,Southeast University,Nanjing,210096,China

摘要: 通过溶液相路线制备了Zn2GeO4纳米棒和Zn2GeO4纳米颗粒.通过X射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、电感耦合等离子体原子发射光谱(ICP­AES)、紫外-可见漫反射光谱、光致发光(PL)谱和比表面积测试对所合成的样品进行了表征.纳米Zn2GeO4由于比通过固相反应合成的Zn2GeO4具有更高的比表面积,对CO2的光还原具有更高的光催化活性.Zn2GeO4纳米棒由于其具有强的CO2气体吸附能力,其光还原性能比Zn2GeO4 纳米颗粒更高.

Abstract: Zn2GeO4 nanorods and nanoparticles were prepared by a solution phase route.The as­prepared products were characterized by X­ray powder diffraction(XRD),scanning electron microscopy(SEM),high­resolution transmission electron microscopy(HRTEM),inductively coupled plasma atomic emission spectrometer(ICP­AES),UV­vis diffuse reflection spectroscopy,photoluminescence(PL) spectroscopy and Brunauer­Emmett­Teller(BET) surface area measurements.Nano­Zn2GeO4 has higher photocatalytic activity in photoreduction of CO2 than Zn2GeO4 prepared through solid­state reaction due to the higher surface area.Zn2GeO4 nanorods show higher photoreduction performance than Zn2GeO4 nanoparticles due to the strong CO2 gas adsorption.

[1] Meng S,Ren J.Kaxiras E.Natural dyes adsorbed on TiO2 nanowire for photovoltaic applications:Enhanced light absorption and ultrafast electron injection.Nano Letters,2008,8(10):3266-3272.  [2] Liu Z Q,Zhang D H,Han S,et al.Laser ablation synthesis and electron transport studies of tin oxide nanowires.Advanced Materials,2003,15(20):1754-1757. [3] Fang X S,Bando Y,Liao M Y,et al.Single­crystalline ZnS nanobelts as ultraviolet­light sensors.Advanced Materials,2009,21(20):2034-2039. [4] Wan L J,Wang X Y,Yan S C,et al.ZnO plates synthesized from the ammonium zinc nitrate hydroxide precursor.CrystEngComm,2012,14:154-159. [5] Steven R,Woodfield B F,Boerio­Goates J,et al.Heat capacities,third­law entropies and thermodynamic function of the negative thermal expansion material Zn2GeO4 from T=(0 to 400)K.The Journal of Chemical Thermodynamics,2004,36(5):349-357. [6] Yan C,Singh N,Lee P S.Wide­bandgap nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time.Applied Physics Letters,2010,96(5):053108. [7] Liu Z S,Jing X P,Wang L X.Luminescence of native defects in Zn2GeO4.Journal of the Electrochemical Society,2007,154(6):H500-H506. [8] Tsai M Y,Yu C Y,Wang C C,et al.Water­driven formation of luminescent Zn2GeO4 nanorods from Zn­containing Ge nanoparticles.Crystal Growth & Design,2008,8(7):2264-2269. [9] Liu Q,Zhou Y,Kou J H,et al.High­yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel.Journal of the American Chemistry Society,2010,132(41):14385-14387. [10] Sato J,Kobayashi H,Ikarashi K,et al.Photocatalytic activity for water decomposition of RuO2­dispersed Zn2GeO4 with d10 configura­tion.Journal of Physical Chemistry B,2004,108(14):4369-4375. [11] Huang J H,Ding K N,Hou Y D,et al.Synthesis and photocatalytic activity of Zn2GeO4 nanorods for degradation of organic pollutants in water.ChemSusChem,2008,1(12):1011-1019. [12] Huang J H,Wang X C,Hou Y D,et al.Degradation of benzene over a zinc germanate photocatalyst under ambient conditions.Environmental Science & Technology,2008,42(19):7387-7391. [13] Yan C,Lee P S.Crystallographic alignment of ZnO nanorod arrays on Zn2GeO4 nanocrystals:Promising lattice­matched substrates.Journal of Physical Chemistry C,2010,114(1):265-268. [14] Liu J,Zhang G K.Template­free synthesis and high photocatalytic activity of hierarchical Zn2GeO4 microspheres.CrystEngComm,2013,15(2):382-389. [15] Sun Y G,Yu L,Rao P H.Rational growth of ternary Zn2GeO4 nanorods and self­assembled hierarchical nanostructures.Journal of Crystal Growth,2012,347(1):73-76. [16] Boppana V B R,Hould N D,Lobo R F.Synthesis,characterization and photocatalytic properties of novel zinc germanate nano­materials.Journal of Solid State Chemistry,2011,184(5):1054-1062. [17] Pei L Z,Yang Y,Yang L J,et al.Large­scale synthesis and the roles of growth conditions on the formation of Zn2GeO4 nanorods.Solid State Communications,2011,151(14-15):1036-1041.  [18] Xu J,Wang C R,Zhang Y,et al.Structural,vibrational and luminescence properties of longitudinal twinning Zn2GeO4 nanowires.CrystEngComm,2013,15(4):764-768. [19] Yan C Y,Lee P S.Synthesis and structure characterization of ternary Zn2GeO4 nanowires by chemical vapor transport.Journal of Physical Chemistry C,2009,113(32):14135-14139. [20] Yi R,Feng J K,Lv D P,et al.Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li­ion batteries.Nano Energy,2013,2(4):498-504. [21] Feng Y,Li X D,Shao Z P,et al.Morphology­dependent performance of Zn2GeO4 as a high­performance anode material for rechargeable lithium ion batteries.Journal of Materials Chemistry A,2015,3:15274-15279. [22] Xia Y N,Yang P D,Sun Y G,et al.One­dimensional nanostructures:Synthesis,characterization,and applications.Advanced Materials,2003,15(5):353-389. [23] Sun Y G,Hu J Q,Chen Z G,et al.Prospective important semiconducting nanotubes:Synthesis,properties and applications.Journal of Materials Chemistry,2009,19(41):7592-7605. [24] Zhou Y,Kogiso M,Shimizu T.Necklace­like chains of hybrid nanospheres consisting of Pd nanocystals and peptidic lipids.Journal of the American Chemistry Society,2009,131(7):2456-2457. [25] Zhang N,Ouyang S X,Li P,et al.Ion­exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photore­duction of CO2.Chemical Communications,2011,47(7):2041-2043. [26] Liu Q,Zhou Y,Tian Z P,et al.Zn2GeO4 crystal splitting toward sheaf­like,hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation.Journal of Materials Chemistry,2012,22(5):2033-2038. [27] Yan S C,Wan L J,Li Z S,et al.Facile temperature­controlled synthesis of hexagonal Zn2GeO4 nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO2.Chemical Communications,2011,47(19):5632-5634. [28] Yang M,Jin X Q.Facile synthesis of Zn2GeO4 nanorods toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel.Journal of Central South University,2014,21(7):2837-2842. [29] Indrakanti V P,Kubicki J D,Schobert H H.Photoinduced activation of CO2 on Ti­based heterogeneous catalysts:Current state,chemical physics­based insights and outlook.Energy & Environmental Science,2009,2(7):745-758. [30] Xu Y,Schoonen M A A.The absolute energy positions of conduction and valence bands of selected semiconducting minerals.American Mineralogist,2000,85(3-4):543-556.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!