南京大学学报(自然科学版) ›› 2017, Vol. 53 ›› Issue (2): 316–.

• • 上一篇    下一篇

斑马鱼在纳米毒理学研究中的应用概述

崔雨晴,杨柳燕,缪爱军*   

  • 出版日期:2017-03-26 发布日期:2017-03-26
  • 作者简介:污染控制与资源化研究国家重点实验室,南京大学环境学院,南京,210023
  • 基金资助:
    基金项目:国家自然科学基金(41271486),海洋公益性行业科研专项(201505034)收稿日期:2016-11-30*通讯联系人,E-mail:miaoaj@nju.edu.cn

Application of zebrafish in nanotoxicology:a review

Cui Yuqing,Yang Liuyan,Miao Aijun*   

  • Online:2017-03-26 Published:2017-03-26
  • About author:State Key Laboratory of Pollution Control and Resources Reuse,School of the Environment,Nanjing University,Nanjing,210023,China

摘要: 随着纳米科技的发展,纳米材料的应用愈加广泛,其环境排放量日益增大,因此环境中纳米材料的生态安全与健康风险越来越受到重视.在毒理学研究应用上,斑马鱼(Danio rerio)作为模式生物的优势十分明显,本文对此进行了总结.然而,如何利用不同生长阶段的斑马鱼对纳米材料进行毒理学研究还在探索之中,相关研究尚集中于毒性终点的描述,致毒机制的挖掘还不够深入,毒性评价还未成体系且缺乏规范.已有研究表明,纳米材料的物理化学特性(例如化学组成、尺寸、形状、表面性质和溶解特性)对斑马鱼毒性效应的影响显著,归纳分析了近十年来的相关研究成果.最后对斑马鱼的纳米毒理学最新研究进展进行归纳汇总,介绍目前这方面研究的难点与空白,并对斑马鱼纳米毒理学的未来研究进行展望.

Abstract: With the rapid development of nanoscience and nanotechnology,the number of nanomaterial?containing products in the market is increasing,and so is its amount in the environment.Therefore,there has been an increase in awareness of the potential risks of ecological safety and environmental health associated with nanomaterials.Zebrafish(Danio rerio)is widely used as a model organism in toxicological studies,with remarkable advantages summarized here.However,application of zebrafish at different growth stages in nanotoxicology is still in its infancy and its toxicity test procedure needs to be standardized.Limited studies show that physicochemical properties of nanomaterials(e.g.,composition,size,shape,surface property,and dissolution)play critical roles in their toxicity to zebrafish.In this review,current nanotoxicological studies using zebrafish as the objective organism have been summarized.The research gaps and future challenges in this field have also been discussed.

[1] 赵春芳.纳米材料的环境风险.化学教学,2005,(5):42-43.(Zhao C,H.The environmental hazards from nano?materials.Education In Chemistry,2005,(5):42-43.)[2] Feynman R P.There’s plenty of room at the bottom.Engineering and Science,1960,23(5):22-36.[3] 刘 颖,陈春英.纳米材料的安全性研究及其评价.科学通报,2011,56(2):119-125.(Liu Y,Chen C Y.Safety and risk assessment of nanomaterials.Chinese Science Bulletin,2011,56(2):119-125.)[4] Hisaoka K K.The effects of 2?acetylamino?fluorene on the embryonic development of the zebrafish I.Morphological studies.Cancer Research,1958,18(5):527-535.[5] Hisaoka K K.The effects of 2?acetylamino?fluorene on the embryonic development of the zebrafish Ⅱ.Histochemical studies.Cancer Research,1958,18(6):664-667.[6] Hisaoka K K,Battle H I.The normal developmental stages of the zebrafish,Brachydanio rerio(hamilton?buchanan).Journal of Morphology,1958,102(2):311-327.[7] Abedi Z H,Mckinley W P.Bioassay of captan by zebrafish larvae.Nature,1967,216(5122):1321-1322.[8] Dave G.The influence of pH on the toxicity of aluminum,cadmium,and iron to eggs and larvae of the zebrafish,Brachydanio rerio.Ecotoxicology and Environmental Safety,1985,10(2):253-267.[9] Dave G.Effect of pH on pentachlorophenol toxicity to embryos and larvae of zebrafish(Brachydanio rerio).Bulletin of Environmental Contamination and Toxicology,1984,33(5):621-630.[10] Gorge G,Nagel R.Kinetics and metabolism of 14C?lindane and 14C?atrazine in early life stages of zebrafish(Brachydanio rerio).Chemosphere,1990,21(9):1125-1137.[11] Dave G,Xiu R Q.Toxicity of mercury,copper,nickel,lead,and cobalt to embryos and larvae of zebrafish,Brachydanio rerio.Archives of Environmental Contamination and Toxicology,1991,21(1):126-134.[12] Hertl J,Nagel R.Bioconcentration and metabolism of 3,4?dichloroaniline in different life stages of guppy and zebrafish.Chemosphere,1993,27(11):2225-2234.[13] Wang Q W,Lai N L S,Wang X F,et al.Bioconcentration and transfer of the organophorous flame retardant 1,3?dichloro?2?propyl phosphate causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish larvae.Environmental Science & Technology,2015,49(8):5123-5132.[14] Wicklund A,Runn P,Norrgren L.Cadmium and zinc interactions in fish:effects of zinc on the uptake,organ distribution,and elimination of 109Cd in the zebrafish,Brachydanio rerio.Archives of Environmental Contamination and Toxicology,1988,17(3):345-354.[15] Glynn A W,Norrgren L,Mussener A.Differences in uptake of inorganic mercury and cadmium in the gills of the zebrafish,Brachydanio rerio.Aquatic Toxicology,1994,30(1):13-26.[16] Bucher G,Mounicou S,Simon O,et al.Different uranium distribution patterns in cytosolic protein pool of zebrafish gills after chronic and acute waterborne exposures.Chemosphere,2014,111:412-417.[17] Skjolding L M,Winther?Nielsen M,Baun A.Trophic transfer of differently functionalized zinc oxide nanoparticles from crustaceans(Daphnia magna)to zebrafish(Danio rerio).Aquatic Toxicology,2014,157:101-108.[18] Lewinski N A,Zhu H,Ouyang C R,et al.Trophic transfer of amphiphilic polymer coated CdSe/ZnS quantum dots to Danio rerio.Nanoscale,2011,3(8):3080-3083.[19] Zhu X S,Wang J X,Zhang X Z,et al.Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain.Chemosphere,2010,79(9):928-933.[20] Liu X J,Ni I H,Wang W X.Trophic transfer of heavy metals from freshwater zooplankton Daphnia magna to zebrafish Danio reiro.Water Research,2002,36(18):4563-4569.[21] Chae Y,An Y J.Toxicity and transfer of polyvinylpyrrolidone?coated silver nanowires in an aquatic food chain consisting of algae,water fleas,and zebrafish.Aquatic Toxicology,2016,173:94-104.[22] Bechard K M,Gillis P L,Wood C M.Trophic transfer of Cd from larval chironomids(Chironomus riparius)exposed via sediment or waterborne routes,to zebrafish(Danio rerio):tissue?specific and subcellular comparisons.Aquatic Toxicology,2008,90(4):310-321.[23] Batel A,Linti F,Scherer M,et al.Transfer of benzo a pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment:CYP1A induction and visual tracking of persistent organic pollutants.Environmental Toxicology and Chemistry,2016,35(7):1656-1666.[24] Vignet C,Joassard L,Lyphout L,et al.Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant.Environmental Science and Pollution Research,2015,22(21):16371-16383.[25] Yu L Q,Lam J C W,Guo Y Y,et al.Parental transfer of polybrominated diphenyl ethers(PBDEs)and thyroid endocrine disruption in zebrafish.Environmental Science & Technology,2011,45(24):10652-10659.[26] Wang M Y,Chen J F,Lin K F,et al.Chronic zebrafish PFOS exposure alters sex ratio and maternal related effects in F1 offspring.Environmental Toxicology and Chemistry,2011,30(9):2073-2080.[27] Schwindt A R.Parental effects of endocrine disrupting compounds in aquatic wildlife:Is there evidence of transgenerational inheritance?General and Comparative Endocrinology,2015,219:152-164.[28] Perrichon P,Akcha F,Le Menach K,et al.Parental trophic exposure to three aromatic fractions of polycyclic aromatic hydrocarbons in the zebrafish:consequences for the offspring.Science of the Total Environment,2015,524:52-62.[29] Nyholm J R,Norman A,Norrgren L,et al.Maternal transfer of brominated flame retardants in zebrafish(Danio rerio).Chemosphere,2008,73(2):203-208.[30] Ho D H,Burggren W W.Parental hypoxic exposure confers offspring hypoxia resistance in zebrafish(Danio rerio).Journal of Experimental Biology,2012,215(23):4208-4216.[31] Chen L G,Yu K,Huang C J,et al.Prenatal transfer of polybrominated diphenyl ethers(PBDEs)results in developmental neurotoxicity in zebrafish larvae.Environmental Science & Technology,2012,46(17):9727-9734.[32] Wen Q,Liu H L,Zhu Y T,et al.Maternal transfer,distribution,and metabolism of BDE?47 and its related hydroxylated,methoxylated analogs in zebrafish(Danio rerio).Chemosphere,2015,120:31-36.[33] Shi J C,Jiao Z H,Zheng S,et al.Long?term effects of Bisphenol AF(BPAF)on hormonal balance and genes of hypothalamus?pituitary?gonad axis and liver of zebrafish(Danio rerio),and the impact on offspring.Chemosphere,2015,128:252-257.[34] 孙智慧,贾顺姬,孟安明.斑马鱼:在生命科学中畅游.生命科学,2006,18(5):431-436.(Sun Z H,Jia S J,Meng A M.Zebrafish:swimming in life sciences.Chinese Bulletin of Life Sciences,2006,18(5):431-436.)[35] Lin S J,Zhao Y,Nel A E,et al.Zebrafish:an in vivo model for nano EHS studies.Small,2013,9(9-10):1608-1618.[36] Driever W,Solnicakrezel L,Schier A F,et al.A genetic screen for mutations affecting embryogenesis in zebrafish.Development,1996,123:37-46.[37] Haffter P,Granato M,Brand M,et al.The identification of genes with unique and essential functions in the development of the zebrafish,Danio rerio.Development,1996,123:1-36.[38] Meng A,Jessen J R,Lin S.Transgenesis.Methods in Cell Biology,1998,60:133-148.[39] Zhang F,Cong L,Lodato S,et al.Efficient construction of sequence?specific TAL effectors for modulating mammalian transcription.Nature Biotechnology,2011,29(2):149-153.[40] Miller J C,Tan S,Qiao G,et al.A TALE nuclease architecture for efficient genome editing.Nature Biotechnology,2011,29(2):143-148.[41] Hyatt T M,Ekker S C.Vectors and techniques for ectopic gene expression in zebrafish.Methods in Cell Biology,1998,59:117-126.[42] OECD TG212.Fish,short term toxicity test on embryo and sac?fry stages.OECD Guidelines for the Testing of Chemicals,1998,1(2):1-20.[43] Water quality.Determination of the acute lethal toxicity of substances to a freshwater fish[Brachydanio rerio Hamilton Buchanan(Teleostei,Cyprinidae)].International Standard ISO,7346(1,2,3).[44] Zhao X,Wang S,Wu Y,et al.Acute ZnO nanoparticles exposure induces developmental toxicity,oxidative stress and DNA damage in embryo?larval zebrafish.Aquatic Toxicology,2013,136:49-59.[45] Ganesan S,Thirumurthi N A,Raghunath A,et al.Acute and sub?lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.Journal of Applied Toxicology,2016,36(4):554-567.[46] Ahmad F,Liu X,Zhou Y,et al.An in vivo evaluation of acute toxicity of cobalt ferrite(CoFe2O4)nanoparticles in larval?embryo Zebrafish(Danio rerio).Aquatic Toxicology,2015,166:21-28.[47] Ye R,Yu X,Yang S,et al.Effects of silica dioxide nanoparticles on the embryonic development of zebrafish.Integrated Ferroelectrics,2013,147(1):166-174.[48] Yeo M K,Kang M.Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis.Bulletin of the Korean Chemical Society,2008,29(6):1179-1184.[49] Browning L M,Lee K J,Huang T,et al.Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments.Nanoscale,2009,1(1):138-152.[50] Asharani P V,Serina N G B,Nurmawati M H,et al.Impact of multi?walled carbon nanotubes on aquatic species.Journal of Nanoscience and Nanotechnology,2008,8(7):3603-3609.[51] Chen L,Hu P,Zhang L,et al.Toxicity of graphene oxide and multi?walled carbon nanotubes against human cells and zebrafish.Science China(Chemistry),2012,55(10):2209-2216.[52] Cheng J P,Flahaut E,Cheng S H.Effect of carbon nanotubes on developing zebrafish(Danio rerio)embryos.Environmental Toxicology and Chemistry,2007,26(4):708-716.[53] Bayat N,Lopes V R,Schoelermann J,et al.Vascular toxicity of ultra?small TiO2 nanoparticles and single walled carbon nanotubes in vitro and in vivo.Biomaterials,2015,63:1-13.[54] Shih Y J,Su C C,Chen C W,et al.Adsorption characteristics of nano?TiO2 onto zebrafish embryos and its impacts on egg hatching.Chemosphere,2016,154:109-117.[55] Chetty S S,Praneetha S,Basu S,et al.Sustainable,rapid synthesis of bright?luminescent CuInS2?ZnS alloyed nanocrystals:Multistage nano?xenotoxicity assessment and intravital fluorescence bioimaging in zebrafish?embryos.Scientific Reports,2016,6:26078.[56] Mcleish J A,Chico T J A,Taylor H B,et al.Skin exposure to micro?and nano?particles can cause haemostasis in zebrafish larvae.Thrombosis and Haemostasis,2010,103(4):797-807.[57] Chen J Y,Dong X,Xin Y Y,et al.Effects of titanium dioxide nano?particles on growth and some histological parameters of zebrafish(Danio rerio)after a long?term exposure.Aquatic Toxicology,2011,101(3-4):493-499.[58] Dal Forno G O,Kist L W,De Azevedo M B,et al.Intraperitoneal exposure to nano/microparticles of fullerene(C?60)increases acetylcholinesterase activity and lipid peroxidation in adult zebrafish(Danio rerio)brain.Biomed Research International,2013:623789.[59] Bar?Ilan O,Albrecht R M,Fako V E,et al.Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos.Small,2009,5(16):1897-1910.[60] Zhu X,Zhu L,Duan Z,et al.Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish(Danio rerio)early developmental stage.Journal of Environmental Science and Health,Part A,2008,43(3):278-284.[61] B?hme S,St?rk H J,Kühnel D,et al.Exploring LA?ICP?MS as a quantitative imaging technique to study nanoparticle uptake in Daphnia magna and zebrafish(Danio rerio)embryos.Analytical and Bioanalytical Chemistry,2015,407(18):5477-5485.[62] Lee K J,Nallathamby P D,Browning L M,et al.In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos.ACS Nano,2007,1(2):133-143.[63] Choi K,Park Y,Kwon D,et al.Effects of size,impurities,and citrate capping on the toxicity of manufactured silver nano?particles to larval zebrafish(Danio rerio).Journal of Environmental Health Sciences,2013,39(4):369-375.[64] Hua J,Vijver M G,Richardson M K,et al.Particle?specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos(Danio rerio).Environmental Toxicology and Chemistry,2014,33(12):2859-2868.[65] Ispas C,Andreescu D,Patel A,et al.Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish.Environmental Science & Technology,2009,43(16):6349-6356.[66] Abdelrasoul G N,Magrassi R,Dante S,et al.PEGylated gold nanorods as optical trackers for biomedical applications:an in vivo and in vitro comparative study.Nanotechnology,2016,27(25):255101.[67] Brundo M V,Pecoraro R,Marino F,et al.Toxicity evaluation of new engineered nanomaterials in zebrafish.Frontiers in Physiology,2016,7:130.doi:110.3389/fphys,2016.[68] Felix L C,Ede J D,Snell D A,et al.Physicochemical properties of functionalized carbon?based nanomaterials and their toxicity to fishes.Carbon,2016,104:78-89.[69] Girigoswami K,Viswanathan M,Murugesan R,et al.Studies on polymer?coated zinc oxide nanoparticles:UV?blocking efficacy and in vivo toxicity.Materials Science & Engineering C?Materials for Biological Applications,2015,56:501-510.[70] Bonventre J A,Pryor J B,Harper B J,et al.The impact of aminated surface ligands and silica shells on the stability,uptake,and toxicity of engineered silver nanoparticles.Journal of Nanoparticle Research,2014,16(12):1-15.[71] Cunningham S,Brennan?Fournet M E,Ledwith D,et al.Effect of nanoparticle stabilization and physicochemical properties on exposure outcome:acute toxicity of silver nanoparticle preparations in zebrafish(Danio rerio).Environmental Science & Technology,2013,47(8):3883-3892.[72] Griffitt R J,Hyndman K,Denslow N D,et al.Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles.Toxicological Sciences,2009,107(2):404-415.[73] Bai W,Tian W,Zhang Z,et al.Effects of copper nanoparticles on the development of zebrafish embryos.Journal of Nanoscience and Nanotechnology,2010,10(12):8670-8676.[74] Bai W,Zhang Z,Tian W,et al.Toxicity of zinc oxide nanoparticles to zebrafish embryo:a physicochemical study of toxicity mechanism.Journal of Nanoparticle Research,2010,12(5):1645-1654.[75] King?Heiden T C,Wiecinski P N,Mangham A N,et al.Quantum dot nanotoxicity assessment using the zebrafish embryo.Environmental Science & Technology,2009,43(5):1605-1611.[76] Muller E B,Lin S,Nisbet R M.Quantitative adverse outcome pathway analysis of hatching in zebrafish with CuO nanoparticles.Environmental Science & Technology,2015,49(19):11817-11824.[77] Chen D,Zhang D,Yu J C,et al.Effects of Cu2O nanoparticle and CuCl2 on zebrafish larvae and a liver cell?line.Aquatic Toxicology,2011,105(3-4):344-354.[78] Liu R,Lin S,Rallo R,et al.Automated phenotype recognition for zebrafish embryo based in vivo high throughput toxicity screening of engineered nano?materials.PLOS ONE,2012,7(4):e35014.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!