南京大学学报(自然科学版) ›› 2017, Vol. 53 ›› Issue (2): 275–.

• • 上一篇    下一篇

不同浓度砷酸盐胁迫对蜈蚣草根际微生物群落功能多样性特征的影响

韩永和,贾梦茹,傅景威,向 萍,史孝霞,崔昕毅,罗 军,陈焱山*   

  • 出版日期:2017-03-26 发布日期:2017-03-26
  • 作者简介:南京大学环境学院,污染控制与资源化国家重点实验室,南京,210023
  • 基金资助:
    基金项目:江苏省博士研究生创新项目(KYLX_0052),南京大学优秀博士研究生创新能力提升计划B(201601B010) 收稿日期:2016-11-12 *通讯联系人,E-mail:chenyanshan@nju.edu.cn

Impacts of arsenate concentrations on functional diversities of rhizosphere microbial communities of Pteris vittata

Han Yonghe,Jia Mengru,Fu Jingwei,Xiang Ping,Shi Xiaoxia,Cui Xinyi,Luo Jun,Chen Yanshan*   

  • Online:2017-03-26 Published:2017-03-26
  • About author:State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment, Nanjing University,Nanjing,210023,China

摘要: 蜈蚣草是世界上第一种被发现的砷超富集植物,其根际微生物对土壤砷的转化及蜈蚣草砷的吸收具有重要影响.采用qPCR和Biolog?Eco微平板法对砷胁迫下蜈蚣草根际微生物群落功能多样性特征的差异进行了研究.首先对蜈蚣草根际微生物的16S rRNA基因丰度进行定量分析;其次,利用Biolog?Eco微平板法分析微生物对31种碳源的平均利用率;同时,通过主成分分析、Shannon多样性指数、Pielou均匀度指数和Simpson优势度指数等探讨了微生物对不同类型碳源利用的差异和砷胁迫对微生物多样性的影响.结果表明,砷胁迫不仅降低16S rRNA基因丰度、减少微生物数量,还会显著影响微生物对碳源的利用效率.其中,微生物对碳水化合物类、氨基酸类和胺类碳源的利用受砷胁迫的影响最显著.此外,砷胁迫会诱导抗砷微生物成为优势群落,结构趋于单一.由于长期暴露可增加蜈蚣草根际微生物的数量,后期研究可深入探讨蜈蚣草根系分泌物中特异碳源物质在强化微生物-蜈蚣草修复砷污染土壤过程中的作用.

Abstract: Pteris vittata is the first reported arsenic(As)hyperaccumulator,and the rhizosphere microorganisms may play important roles in As transformation in the soils and As uptake by the plants.The aim of this work was to investigate the impacts of arsenate(As(V))concentration stress on functional diversities of microbial communities in rhizosphere of Pteris vittata,using qPCR and Biolog?Eco microplate methods.Qualitative analyses of the microbial 16S rRNA gene abundance in P.vittata rhizosphere were used to evaluate the effects of As stress on microbial population change.To test the relationships between the microbial community functional changes and As(V) concentrations,Biolog?Eco microplate?based method was used to analyze the average well color development(AWCD)for the thirty?one carbon sources by inoculating microorganisms.Besides,the principal component analysis,Shannon diversity index,Pielou evenness index and Simpson dominance index were also used to investigate the difference in carbon source utilization by microorganisms and the impacts of As(V) concentration stress on microbial diversity.Results showed that As stress not only decreased 16S rRNA gene abundance and decreased microbial population,but also significantly affected carbon utilization.Among different carbon sources,carbohydrate?,amino acid?,and amine?type carbon resources were inhibited more significantly by As than others,indicating that the microbial adaption to As stress was achieved by the cost of reducing the consumption of carbohydrates,amino acids and amines.Moreover,As stress decreased the Shannon diversity index,Pielou evenness index and Simpson dominance index of the microorganisms colonizing the P.vittata rhizosphere.This indicated that the As?resistant microorganisms might dominate the diversity?reduced microbial communities,highlighting their roles in As transformation in the rhizosphere of P.vittata.Since a long?term exposure could increase the population of rhizospheric microorganisms,further studies should focus mostly on the roles and mechanisms of the exudates of P.vittata in regulating the microbial community structure and functional diversity.Our data also shed light on improving P.vittata?mediated phytoremediation effect of As?contaminated soils,probably by applying those carbon resources in the exudates to enhance microorganisms’ activity.

[1] 韩永和,王珊珊.微生物耐砷机理及其在砷地球化学循环中的作用.微生物学报,2016,56(6):901-910.(Han Y,Wang S.Arsenic resistance mechanisms in microbes and their roles in arsenic geochemical cycling-A review.Acta Microbiologica Sinica,2016,56(6):901-910.) [2] Ferguson J F,Gavis J.A review of the arsenic cycle in natural waters.Water Research,1972,6(11):1259-1274. [3] Sun H J,Xiang P,Luo J,et al.Mechanisms of arsenic disruption on gonadal,adrenal and thyroid endocrine systems in humans:A review.Environment International,2016,95:61-68. [4] Sundaram S,Wu S,Ma L Q,et al.Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves.Plant,Cell & Environment,2009,32(7):851-858. [5] Ontario Ministry of the Environment.About arsenic in drinking water.http://www.ene.gov.on.ca/environment/en/index.htm,2007. [6] Shen H,Xu W,Zhang J,et al.Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a Han Chinese population.Environmental Science & Technology,2013,47(15):8843-8851. [7] Fry R C,Navasumrit P,Valiathan C,et al.Activation of inflammation/NF?κB signaling in infants born to arsenic?exposed mothers.PLoS Genetics,2007,3,doi:10.1371/journal.pgen.0030207(11). [8] Zhao F J,Ma Y,Zhu Y G,et al.Soil contamination in China:Current status and mitigation strategies.Environmental Science & Technology,2014,49:750-759. [9] Salt D E,Blaylock M,Kumar N P,et al.Phytoremediation:A novel strategy for the removal of toxic metals from the environment using plants.Nature Biotechnology,1995,13(5):468-474. [10] Mondal P,Majumder C,Mohanty B.Laboratory based approaches for arsenic remediation from contaminated water:Recent developments.Journal of Hazardous Materials,2006,137(1):464-479. [11] Xie Q E,Yan X L,Liao X Y,et al.The arsenic hyperaccumulator fern Pteris vittata L.Environmental Science & Technology,2009,43(22):8488-8495. [12] Danh L T,Truong P,Mammucari R,et al.A critical review of the As uptake mechanisms and phytoremediation potential of Pteris vittata.International Journal of Phytoremediation,2014,16(5):429-453. [13] Ma L Q,Komar K M,Tu C,et al.A fern that hyperaccumulates arsenic:A hardy,versatile,fast?growing plant helps to remove arsenic from contaminated soils.Nature,2001,409(6820):579. [14] Kertulis?Tartar G M,Ma L Q,Tu C,et al.Phytoremediation of an arsenic?contaminated site using Pteris vittata L.:A two?year study.International Journal of Phytoremediation,2006,8(4):311-322. [15] Lessl J T,Luo J,Ma L Q.Pteris vittata continuously removed arsenic from non?labile fraction in three contaminated?soils during 3.5?year of phytoextraction.Journal of Hazardous Materials,2014,279:485-492. [16] Huang J W,Poynton C Y,Kochian L V,et al.Phytofiltration of arsenic from drinking water using arsenic?hyperaccumulating ferns.Environmental Science & Technology,2004,38(12):3412-3417. [17] Tu S,Ma L Q,Fayiga A O,et al.Phytoremediation of arsenic?contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L.International Journal of Phytoremediation,2004,6(1):35-47. [18] Fitz W J,Wenzel W W,Zhang H,et al.Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L.and monitoring of phytoremoval efficiency.Environmental Science & Technology,2003,37(21):5008-5014. [19] Jia Y,Huang H,Chen Z,et al.Arsenic uptake by rice is influenced by microbe?mediated As redox changes in the rhizosphere.Environmental Science & Technology,2014,48(2):1001-1007. [20] Jia Y,Huang H,Zhong M,et al.Microbial arsenic methylation in soil and rice rhizosphere.Environmental Science & Technology,2013,47(7):3141-3148. [21] Han Y H,Fu J W,Chen Y,et al.Arsenic uptake,arsenite efflux and plant growth in hyperaccumulator Pteris vittata:Role of arsenic?resistant bacteria.Chemosphere,2016,144:1937-1942. [22] Han Y H,Fu J W,Xiang P,et al.Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As?hyperaccumulator Pteris vittata.Journal of Hazardous Materials,2017,321:146-153. [23] Visioli G,D’Egidio S,Sanangelantoni A M.The bacterial rhizobiome of hyperaccumulators:Future perspectives based on omics analysis and advanced microscopy.Frontiers in Plant Science,2015,5,doi:10.3389/fpls.2014.00752. [24] Sforna M C,Philippot P,Somogyi A,et al.Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago.Nature Geoscience,2014,7(11):811-815. [25] Zhu Y G,Yoshinaga M,Zhao F J,et al.Earth abides arsenic biotransformations.Annual Review of Earth and Planetary Sciences,2014,42(1):443-467. [26] 王 强,戴九兰,吴大千等.微生物生态研究中基于BIOLOG方法的数据分析.生态学报,2010,30(3):817-823.(Wang Q,Dai J,Wu D,et al.Statistical analysis of data from BIOLOG method in the study of microbial ecology.Acta Ecologica Sinica,2010,30(3):817-823.) [27] Han Y H,Yang G M,Fu J W,et al.Arsenic?induced plant growth of arsenic?hyperaccumulator Pteris vittata:Impact of arsenic and phosphate rock.Chemosphere,2016,149:366-372. [28] Liang S,Guan D X,Ren J H,et al.Effect of aging on arsenic and lead fractionation and availability in soils:Coupling sequential extractions with diffusive gradients in thin?films technique.Journal of Hazardous Materials,2014,273:272-279. [29] Xu J Y,Li H B,Liang S,et al.Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata.Environmental Pollution,2014,194:105-111. [30] Tipayno S,Kim C G,Sa T.T?RFLP analysis of structural changes in soil bacterial communities in response to metal and metalloid contamination and initial phytoremediation.Applied Soil Ecology,2012,61:137-146. [31] Liu X,Fu J W,Guang D X,et al.Arsenic induced phytate exudation,and promoted FeAsO4 dissolution and plant growth in As?hyperaccumulator Pteris vittata.Environmental Science & Technology,2016,50(17):9070-9077. [32] Tu S,Ma L,Luongo T.Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non?hyperaccumulating Nephrolepis exaltata.Plant and Soil,2004,258(1):9-19. [33] 孔 滨,杨秀娟.Biolog生态板的应用原理及碳源构成.绿色科技,2011,(7):231-234.(Kong B,Yang X.Application principles and carbon sources of Biolog?Eco plate.Journal of Green Science and Technology,2011,(7):231-234.) [34] 王 佳,罗学刚,石 岩.美洲商陆(Phytolacca Americana L.)对铀的富集特征及根际微生物群落功能多样性的响应.环境科学学报,2014,34(8):2094-2101.(Wang J,Luo X,Shi Y.Characteristics of uranium uptake by pokeweed(Phytolacca Americana L.)and response of rhizosphere microbial community functional diversity.Acta Scientiae Circumstantiae,2014,34(8):2094-2101.) [35] Xiong J,Wu L,Tu S,et al.Microbial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic?hyperaccumulating plant Pteris vittata L.Applied and Environmental Microbiology,2010,76(21):7277-7284. [36] Garland J L.Analysis and interpretation of community?level physiological in microbial ecology.FEMS Microbiology Ecology,1997,24(4):289-300. [37] Xu J Y,Han Y H,Chen Y,et al.Arsenic transformation and plant growth promotion characteristics of As?resistant endophytic bacteria from As?hyperaccumulator Pteris vittata.Chemosphere,2016,144:1233-1240. [38] Zhu L J,Guan D X,Luo J,et al.Characterization of arsenic?resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida.Chemosphere,2014,113:9-16. [39] Garland J L,Mills A L.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community?level sole?carbon?source utilization.Applied and Environmental Microbiology,1991,57(8):2351-2359. [40] Gremion F,Chatzinotas A,Kaufmann K,et al.Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve?month microcosm experiment.FEMS Microbiology Ecology,2004,48(2):273-283.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!