南京大学学报(自然科学版) ›› 2017, Vol. 53 ›› Issue (2): 256–.

• • 上一篇    下一篇

太湖有机污染物的生态风险研究

 万晨洁,余益军,张 莉,张晓辉,刘红玲*,于红霞   

  • 出版日期:2017-03-26 发布日期:2017-03-26
  • 作者简介:?南京大学环境学院,污染控制与资源化研究国家重点实验室,南京,210023
  • 基金资助:
    ?基金项目:国家自然科学基金(21677073,213770533),水专项(2012ZX07506-001,2012ZX07501-003-02)
    收稿日期:2016-10-15
    *通讯联系人,E-mail:hlliu@nju.edu.cn

Screening level ecological risk assessment of organic pollutants in Tai Lake

Wan Chenjie,Yu Yijun,Zhang Li,Zhang Xiaohui,Liu Hongling*,Yu Hongxia   

  • Online:2017-03-26 Published:2017-03-26
  • About author:?tate Key Laboratory of Pollution Control & Resource Reuse,School of the Environment,Nanjing University,Nanjing,210023,China

摘要:  综合评估太湖水体中有机污染物短期和长期的生态风险,筛选出潜在风险大、需要重点关注的物质,并基于有机物的敏感生物统计,分析其对太湖生物多样性的影响.通过文献检索,汇总整理了21类232种太湖中有机污染物的浓度水平,其跨度在0.1~6000 ng·L-1之间,其中60%为弱极性有机物(lgKow>3).借助物种敏感性分布(SSD,Sensitive species distribution)计算潜在受影响的物种比例(PAF,Potential affected fraction)来表征其中104种有机物的急性生态风险和46种有机物的慢性生态风险,大部分有机物的急性风险小于5%,但慢性风险显著大于急性风险,其中有机农药对硫磷(12.96%)、异狄氏剂(14.00%)、六氯苯(6.85%)和甲基对硫磷(7.05%),多环芳烃苯并[a]芘(7.75%),雌激素类物质E1(14.83%)、E2(14.96%)和壬基酚(19.76%)慢性风险较大.分析这些有机污染物的影响生物敏感种属,底栖生物、浮游动物、鱼类和昆虫出现频次高,结合太湖近30年来生物多样性变化,初步推测太湖水体有机污染是导致生物多样性变降低的重要原因之一.

Abstract:  To determine which pollutants deserve more attention from further research and regulatory actions,we present a comprehensive ecological risk assessment of organic pollutants in Tai Lake.The concentrations of 232 organic pollutants in 21 categories are yielded by literature research.The average concentrations of different categories range from 0.1 to 6000 ng·L-1.60% of them are low polar organics(lgKow>3)and 40% are polar organics(lgKow<3).Sensitive species distribution(SSD)analysis is applied to 104 and 46 organic pollutants to predict their acute and chronic risks respectively by calculating potential affected fractions(PAF)of all the organisms under predicted environmental concentrations.With acute PAF of most pollutants below the 5% threshold,acute ecological risks of organic pollutants are negligible.However,significant increases in chronic risks are seen for most pollutants,especially for Parathion-ethyl(12.96%),Endrin(14.00%),Hexachlorobenzene(6.85%),Methylparathion(7.05%),Benzo[a]pyrene(7.75%),Estrone(14.83%),17β-estradiol(14.96%)and Nonyphenol(19.76%).Most sensitive species of above organic pollutants mainly belong to benthos,zooplankton,insects and fish,which may explain the loss of species in benthos,zooplankton and fish during the past 30 years in Tai Lake.So we may get the conclusion that organic pollutions in Tai Lake were part of the reasons for the decrease in biodiversity,which calls for further measures to restore ecosystem health.

 [1] Wheeler J R,Grist E P M,Leung K M Y,et al.Species sensitivity distributions:Data and model choice.Marine Pollution Bulletin,2002,45:192-202.
[2] Newman M C,Unger M A.Fundamentals of ecotoxicology.Second Edition.Software Quality Professional,2004(3):35.
[3] Guo L.Doing battle with the green monster of Taihu Lake.Science,2007,317(5842):1166.
[4] 吴月芽,张根福.1950年代以来太湖流域水环境变迁与驱动因素.经济地理,2014,11:151-157.(Wu Y,Zhang G.Wooter environment changes of Taihu basin sime the 1950s and its driving faetors.Econimic Geography,2014,11:151-157.)
[5] Li D,Erickson R A,Tang S,et al.Structure and spatial patterns of macrobenthic community in Tai Lake,a large shallow lake,China.Ecological Indicators,2016(16):179-187.
[6] Pc V D O,Dulio V,Slobodnik J,et al.A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive.Science of the Total Environment,2011,409(11):2064-2077.
[7] Hu J,Zhang Z,Wei Q,et al.Malformations of the endangered Chinese sturgeon,Acipenser sinensis,and its causal agent.Proceedings of the National Academy of Sciences,2009,106(23):9339-9344. 
[8] USEPA.Risks of Atrazine Use to Federally Listed Endangered Pallid Aturgeon(Scaphir-hynchus albus),Pesticide Effects Determination.Office of Pesticide Programs,US Environmental Protection Agency,2007.
[9] Besser J M,Wang N,Dwyer F J,et al.Assessing contaminant sensitivity of endangered and threatened aquatic species:Part Ⅱ.Chronic toxicity of copper and pentachlorophenol to two endangered species and two surrogate species.Archives of Environmental Contamination & Toxicology,2005,48:155-165.
[10] Warne M St J,Westbury A M,Sunderam R I M,et al.A compilation of data on the toxicity of chemicals to Australasian species.Part 1:Pesticides.Australasian Journal of Ecotoxi-cology,1998,4(2):93-144.
[11] USEPA.Stephen C E,Mount D I,Hansen D J,et al.Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses.US Environmental Protection Agency,1985.
[12] Jones O A H,Voulvoulis N,Lester J N.Aquatic environmental assessment of the top 25 English prescription pharmaceuticals.Water Research,2002,36(20):5013-22.
[13] Salvito D T,Senna R J,Federle T W.A framework for prioritizing fragrance materials for aquatic risk assessment.Environmental Toxicology & Chemistry,2002,21(6):1301-1308. 
[14] Dyer S D,Versteeg D J,Belanger S E,et al.Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria.Environmental Science & Technology,2008,42(8):3076-3083.
[15] Malaj E,Pc V D O,Grote M,et al.Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale.Proceedings of the National Academy of Sciences of the United States of America,2014,111(26):9549-9554.
[16] Hose G C,Brink P J V D.Confirming the species-sensitivity distribution concept for endosulfan using laboratory,mesocosm,and field data.Archives of Environmental Contamination & Toxicology,2004,47(4):511-520.
[17] Patrick S M,Bornman M S,Joubert A M,et al.Effects of environmental endocrine disruptors,including insecticides used for malaria vector control on reproductive parameters of male rats.Reproductive Toxicology,2016,61:19-27.
[18] Kuster M,Alda M J L D,Barceló D.Analysis and distribution of estrogens and progestogens in sewage sludge,soils and sediments.Trac Trends in Analytical Chemistry,2004,23(10-11):790-798. 
[19] Froehner S,Machado K S,Stefan E,et al.Occurrence of selected estrogens in mangrove sediments.Marine Pollution Bulletin,2012,64(1):75-79.
[20] Katchy A,Pinto C,Jonsson P,et al.Coexposure to phytoestrogens and bisphenol a mimics estrogenic effects in an additive manner.Toxicological Sciences,2014,138(1):21-35.
[21] Chen Y,Yu S,Tang T,et al.Site-specific water quality criteria for aquatic ecosystems:A case study of pentachlorophenol for Tai Lake,China.Science of the Total Environment,2016,541:65-73.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!