The purpose of this paper is to increase the recognition rate of projectile target.For identifying projectile target,it is necessary to extract target feature.Ballistic missile features commonly used in the scientific research work include radar cross section(RCS)feature,polarization feature,high resolution range profile(HRRP),inverse synthetic aperture radar(ISAR)image,micromotion feature etc.This paper mainly elaborates HRRP and micromotion feature.In order to simplify the calculation of HRRP,we apply target scattering centers model.Ballistic missile release the decoy to avoid interception during the flight,causing warhead’s motion behaves as procession while decoy’s motion behaves as swaying.This study analyses how warhead and decoy moves when ballistic missile release the decoy and builds models for them.We process micromotion model with shorttime Fourier transform and extract the timefrequency ridge as micromotion feature.Warhead and decoy are abundant in structure information so it is not proper to identify projectile target merely rely on one single feature.This paper puts forward a superior recognition method based on multiple feature combination,combining HRRP feature with micromotion feature.We use principal component analysis(PCA)to reduce the dimensionality and choose support vector machine(SVM)as classification algorithm.We draw HRRP figure and multiple feature spectrum figure for the warhead and the decoy through the simulation experiment.In order to simulate the target recognition process accurately,this paper change the number of test set and create a table of comparing results.Simulation experiment shows that the recognition rate of projectile target significantly improved compared to recognition relying on one single feature.
Chen Weiwei,Zhang Xinggan*.
A recognition method of ballistic missile based on multiple feature combination [J]. Journal of Nanjing University(Natural Sciences), 2016, 52(6): 1113
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Liu H,Chen F,Du L,et al.Robust radar automatic target recognition algorithm based on HRRP signature.Frontiers of Electrical and Electronic Engineering,2012,7(1):49-55. [2] Dong W G,Li Y J.Radar target recognition based on microdoppler effect.Optoelectronics Letters,2008,4(6):456-459. [3] Chen V C,Li F,Ho S,et al.Microdoppler effect in radar:phenomenon,model,and simulation study.IEEE Transactions on Aerospace & Electronic Systems,2006,42:2-21. [4] 金光虎,高勋章,黎 湘等.基于ISAR像序列的弹道目标进动特征提取.电子学报,2010,38(6):1233-1238.(Jin G H,Gao X Z,Li X.Precession feature extraction of ballistic targets based on dynamic isar image sequence.Chinese Journal of Electronics,2010,38(6):1233-1238.) [5] 苏东林,曾国奇,刘 焱等.运动目标RCS特性分析.北京航空航天大学学报,2006,12(12):1413-1417.(Su D L,Zeng G Q,Liu Y,et al.RCS study of moving radar targets.Journal of Beijing University of Aeronautics and Astronautics,2006,32(12):1413-1417.) [6] 戴 军,方 晖,张兴敢.基于RCS的弹道导弹中段目标联合识别研究.南京大学学报(自然科学),2015,51(1):20-24.(Dai J,Fang H,Zhang X G.Simulation of RCS of ballistic missile warhead.Journal of Nanjing University(Natural Sciences),2015,51(1):20-24.) [7] 程 旭,马 梁,李永祯等.弹道目标极化特征可分性研究.雷达科学与技术,2011,5(5):457-463.(Cheng X,Ma L,Li Y Z.Research on the separability of ballistic targets’polarimetry characteristics.Radar Science and Technology,2011,5(5):457-463.) [8] 关永胜,左群声,刘宏伟.基于微多普勒特征的空间锥体目标识别.电波科学学报,2011,26(2):209-215.(Guan Y S,Zuo Q S,Liu H W.Coneshaped target recognition in exoatmosphere based on microdoppler signature.Chinese Journal of Radio Science,2011,26(2):209-215.) [9] 陈 凤,杜 兰,刘宏伟等.一种利用强度信息的雷达HRRP自动目标识别方法.电子学报,2009,37(3):459-463.(Chen F,Du L,Liu H W.Radar HRRP automatic target recognition using amplitude information.Chinese Journal of Electronics,2009,37(3):459-463.) [10] 金 盛,高梅国,王 洋.基于RCS的空间目标识别技术.现代雷达,2010,32(6):59-62.(Jin S,Gao M G,Wang Y.Technology of space target recognition based on RCS.Modern Radar,2010,32(6):59-62.) [11] Decoste D,Schölkopf B.Training invariant support vector machines.Machine Learning,2002,46(1-3):161-190. [12] Yang X W,Lin D,Hao Z F,et al.A fast SVM training algorithm based on the set segmentation and kmeans clustering.Progress in Natural Science,2003,10(10):750-755. [13] Yang J,Zhang D,Frangi A F,et al.Twodimensional PCA:A new approach to appearancebased face representation and recognition.IEEE Transactions on Pattern Analysis & Machine Intelligence,2004,26(1):131-137. [14] 张利军,刘兴霞.基于散射中心理论的雷达回波一维距离像模拟研究.克拉玛依学刊,2010,347-348.(Zhang L J,Liu X X.Research on radarecho HRRP based on scattering centers theory.Journal of Karamay,2010:347-348.) [15] 王 见,李金同,卢华玲等.采用STFTWigner变换抑制WignerVille分布交叉项.重庆大学学报,2013,36(8):15-18.(Wang J,Li J T,Lu H L.Using STFTWigner transform to suppress the cross terms in WignerVille distribution.Journal of Chongqing University,2013,26(8):15-18.) [16] 王兆云,张兴敢,柏业超.基于微多普勒的锥体目标进动和结构参数估计.南京大学学报(自然科学),2014,50(2):148-153.(Wang Z Y,Zhang X G,Bai Y C.Precession and structural parameter estimation of coneshaped target based on the microDoppler.Journal of Nanjing University(Natural Sciences),2014,50(2):148-153.)