南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (6): 1001–.

• • 上一篇    下一篇

无锡市分级颗粒物来源解析研究

陈璞珑1,谢晓栋1,黄满堂1,王体健1*,杜元新2,东 梅2,邹 华3   

  • 出版日期:2016-11-21 发布日期:2016-11-21
  • 作者简介: 1.南京大学大气科学学院,南京,210023;2.无锡市环境监测中心站,无锡,214121;
    3.江南大学环境与土木工程学院,无锡,214122
  • 基金资助:
    基金项目:国家重点研发计划(2016YFC0208504,2016YFC0203303),国家重点基础研究发展计划(2014CB441203)
    收稿日期:2016-08-30
    *通讯联系人,E­mail:tjwang@nju.edu.cn

A study of chemical mass balance source apportionment of size­fractionated particulate matter in Wuxi

Chen Pulong1,Xie Xiaodong1,Huang Mantang1,Wang Tijian1*,Du Yuanxin2,Dong Mei2,Zou Hua3   

  • Online:2016-11-21 Published:2016-11-21
  • About author: 1.School of Atmospheric Sciences,Nanjing University,Nanjing,210023,China;
    2.Environmental Monitoring Center of Wuxi,Wuxi,214121,China;
    3.Environment and Civil Engineering Institute,Jiangnan University,Wuxi,214122,China

摘要: 在无锡市崇宁和旺庄环境监测子站,通过对分级颗粒物进行不同季节(2014年4、7、10、12月)的采样,同时对当地颗粒物主要排放源进行采样,并对受体和排放源样品浓度和化学成分进行特征分析,结合化学质量平衡(CMB)模型解析无锡市城区和工业区分级颗粒物来源,确定分级颗粒物不同排放源的贡献率.两个观测站点,PM10年均浓度分别为143.1 μg·m-3(崇宁站)、119.9 μg·m-3(旺庄站);PM2.1平均质量浓度分别为71.9 μg·m-3(崇宁站)、65.3 μg·m-3(旺庄站);PM1.1年平均质量浓度分别为53.7 μg·m-3(崇宁站)、49.9 μg·m-3(旺庄).崇宁站各级颗粒物平均质量浓度均要高于旺庄站,季节差异上,颗粒物浓度在冬季明显高于其他三个季节.分级颗粒物最主要的化学成分是NO-3、SO2-4、OC、NH+4、EC、Ca、Cl-、K、Fe、Al、Na等,通过质量重构方法后最主要的化学组分依次是颗粒态有机物(POM)、硫酸根(SO2-4)、硝酸根(NO-3)、铵根(NH+4)、地壳元素(CM)、其它水溶性离子、元素碳(EC)和微量元素.利用CMB模型计算得到,无锡市PM10的排放源主要为二次硝酸盐(18.2%)、二次硫酸盐(17.3%)、土壤扬尘(9.0%),PM2.1最主要的三类排放源依次是二次硝酸盐(26.4%)、二次硫酸盐(22.6%)和电厂燃煤(7.3%),PM1.1的排放主要来自二次硝酸盐和二次硫酸盐,分别可以达到26.6%和22.5%.分级颗粒物来源解析结果可以看出,粗粒径颗粒物主要来自于扬尘类、汽车尾气和工业过程,细粒径颗粒物主要来自汽车尾气和工业过程.为了减轻无锡市颗粒物浓度水平,重点是控制燃煤、工业生产活动中大气污染物的排放,同时要加强城市建设中的扬尘和交通废气控制.

Abstract: In this study,size­fractionated particles were sampled at environmental monitor stations(Chongning and Wangzhuang stastions)in all seasons(April,July,October,December in 2014)in Wuxi.Samples of local emission sources were collected and source profiles were made.Characteristics of concentrations and chemical compositions were analyzed.A chemical mass balance(CMB)model was applied to apportion the contribution rate of different sources at urban area and industrial area.Investigations show that the concentrations of PM10,PM2.1 and PM1.1 were 143.1 μg·m-3 ,71.9 μg·m-3,and 53.7 μg·m-3 at Chongning station.The concentrations of PM0.1,PM2.1,PM1.1 were 119.9 μg·m-3,65.3 μg·m-3 ,49.9 μg·m-3 at Wangzhuang station.The average concentration at Chongning Station was higher than that at Wangzhuang Station.The average concentration in winter was higher than that in other three seasons.The dominant chemical compositions of size­fractionated particles were NO-3,SO2-4,OC,NH+4,EC,Ca,Cl-,K,Fe,Al and Na.Through mass reconstruction method,main chemical constituents are particle organic matter(POM),sulfate(SO2-4),nitrate(NO-3),ammonium(NH4 +),the elements of the earth’s crust(CM),other water­soluble ions,elemental carbon(EC)and trace elements.The results of source apportionment show that main sources of PM10 are secondary nitrate(18.2%),secondary sulfate(17.3%),soil dust(9.0%).The three largest sources of PM2.1 are secondary nitrate(26.4%),secondary sulfate(22.6%)and coal combustion(7.3%).For PM1.1, the emissions are mainly from secondary nitrate(26.6%)and secondary sulfate(22.5%).Dusts and primary emission of industrial activity are the main sources of coarse particles.For fine particulate matter,secondary aerosols such as secondary sulfate,secondary nitrate and secondary organic aerosols are the main sources.The findings point out that it will be necessary to control the emissions of coal combustion,industrial activity and reduce the emission of construction dust.

[1] Wang Y,Zhuang G,Zhang X,et al.The ion chemistry,seasonal cycle,and sources of PM2.5 and TSP aerosol in Shanghai.Atmospheric Environment,2006,40:2935-2952.
[2]  Song Y,Tang X,Xie S,et al.Source apportionment of PM2.5 in Beijing in 2004.Journal of Hazardons Materials,2007,146:124-130.
[3]  Zhang T,Cao J J,Tie X X.Water­soluble ions in atmospheric aerosols measured in Xi’an,China:Seasonal variations and sources.Atmospheric Research,2011,102:110-119.
[4]  Kong S,Han B,Bai Z,et al.Receptor modeling of PM2.5,PM10 and TSP in different seasons and long­range transport analysis at a coastal site of Tianjin,China.Science of the Total Environment,2010,408:4681-4694.
[5]  Chen P L,Wang T J,Hu X,et al.Chemical mass balance source apportionment of size­fractionated particulate matter in Nanjing,China.Aerosol and Air Quality Research,2015,15:1855-1867.
[6]  黄辉军,刘红年,蒋维楣.南京市PM2.5物理化学特性及来源解析.气候与环境研究,2006,11(6):713-722.(Huang H J,Liu H N,Jiang W M.Physical and chemical characteristics and source apportionment of PM2.5 in Nanjing.Climate and Environmental Research,2006,11(6):713-722.)
[7]  黄辉军,刘红年,蒋维楣.南京主城区大气颗粒物来源探讨.气象科学,2007,27(2):162-168.(Huang H J,Liu H N,Jiang W M.Source apportionment research of atmospheric particulate in Nanjing.Scientia Meteorologica Sinica,2007,27(2):162-168.)
[8]  Antony Chen L W,John G.Watson,Judith C.Chow.Chemical mass balance source apportionment for combined PM2.5 measurements from U.S.non­urban and urban long­term networks.Atmospheric Environment,2010,44:4908-4918.
[9]  Zhang Y F,Xu H,Tian Y Z.The study on vertical variability of PM10 and the possible sources on a 220 m tower,in Tianjin China.Atmospheric Environment,2011,45:6133-6140.
[10]  Dhananjay K.Deshmukh,Manas K.Deb,Ying I.Tsai.Water soluble ions in PM2.5 and PM2.1 aerosols in durg city,Chhattisgarh,India.Aerosol and Air Quality Research,2011,11:696-708.
[11]  Guor­Cheng Fang G C,Shih­Chieh Lin,Shih­Yu Chang.Characteristics of major secondary ions in typical polluted atmospheric aerosols during autumn in central Taiwan.Journal of Environment Management,2011,92:1520-1527.
[12]  Galindo N,Yubero E,Nicolas J F.Water­soluble ions measured in fine particulate matter next to cement works.Atmospheric Environment,2011,45:2043-2049.
[13]  郭照冰,包春晓,陈天蕾.北京奥运期间气溶胶中水溶性无机离子浓度特征及来源解析.大气科学学报,2011,34(6):683-687.(Guo Z B,Bao C X,Chen T L.Mass concentration characteristics and source apportionment of water­soluble inorganic ions in aerosol in Beijing during 2008 Beijing Olympic Games.Transactions of Atmospheric Sciences,2011,34(6):683-687.)
[14]  李伟芳,白志鹏,史建武.天津市环境空气中细粒子的污染特征与来源.环境科学研究,2010,23(4):394-400.(Li W F,Bai Z P,Shi J W.Pollution characteristics and sources of fine particulate matter in ambient air in Tianjin city.Research of Environmental Sciences,2010,23(4):394-400.)
[15]  包 贞,冯银厂,焦 荔等.杭州市大气PM2.5和PM10污染特征及来源解析.中国环境监测,2010,26(2):44-48.(Bao Z,Feng Y C,Jiao L,et al.Characterization and source apportionment of PM2.5 and PM10 in Hangzhou.Environmental Monitoring in China,2010,26(2):44-48.)
[16]  Xu L L,Chen X Q,Chen J S,et al.Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou,China.Atmospheric Research,2012(104-105):264-272.
[17]  He K B,Yang F M,Ma Y L,et al.The characteristics of PM2.5 in Beijing,China.Atmospheric Environment,2001(35):4959-4970
[18]  环境空气颗粒物来源解析监测方法指南(试行)(第二版),2014-2-28.(Guide of source apportionment and monitoring method of ambient particles.The 2nd Edition.February 28,2014.)
[19]  Miller,Feiedlander.A chemical element balance for the pasadena aerosol.Journal of Colloid and Interface Science,1972,39:165-176.
[20]  Cooper,Watson.Receptor oriented methods of air particulate source apportionment.Journal of the Air Pollution Control Association,1980,30(19):1116-1125.
[21]  Britt,Luecke.Estimation of parameters in nonlinear implicit models.Technometrics,1973,15(2):233-247.
[22]  Watson J G,Robinson N F,Chow J C,et al.The USEPA/DRI chemical mass balance receptor model,CMB 7.0.Environmental.Software 1990,5:38-49.
[23]  Yassaa N,Meklati B Y,Cecinato A,et al.Organic aerosols in urban and waste landfill of Algiers metropolitan area:occurrence and sources.Environmental Science & Technology,2001,35(2):306-11.
[24]  Chow J C,Watson J G,Lu Z,et al.Descriptive analysis of PM 2.5,and PM 10,at regionally representative locations during SJVAQS/AUSPEX.Atmospheric Environment,1996,30(12):2079-2112.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邱 浩,王欣然*. 二硫化钼的电子输运与器件[J]. 南京大学学报(自然科学版), 2014, 50(3): 280 .
[2] 王学锋1,2*,徐永兵1,2*,张 荣1,2. 低维磁性耦合体系的新物性及电/光场调控进展[J]. 南京大学学报(自然科学版), 2014, 50(3): 309 .
[3] 骆乾坤*,吴剑锋2,杨运3,钱家忠1. 渗透系数空间变异程度对进化算法优化结果影响评价[J]. 南京大学学报(自然科学版), 2015, 51(1): 60 -66 .
[4] 孙大军1,2, 王永恒1,2*, 勇俊1,2. 实频数据技术在水声换能器宽带匹配中的应用[J]. 南京大学学报(自然科学版), 2015, 51(6): 1182 -1188 .
[5] 杨政予1,王新龙1
. 茅山军号声现象的进一步研究[J]. 南京大学学报(自然科学版), 2015, 51(6): 1097 -1106 .
[6] 张亚平,2,万宇1,2,聂青3,阮晓红1,2*,王子健4. 湖泊水体中氮的生物地球化学过程及其生态学意义[J]. 南京大学学报(自然科学版), 2016, 52(1): 5 -15 .
[7] 李荣富1,2,罗跃辉 ,2,曾洪玉1,2,阮晓红1,2*,刘丛强3*. 稳定同位素技术在环境水体氮的生物地球化学循环研究中的应用[J]. 南京大学学报(自然科学版), 2016, 52(1): 16 -26 .
[8] 李 婷1,张超智1,2*,沈 丹1,袁 阳1. 石墨烯和氧化石墨烯的生物体毒性研究进展[J]. 南京大学学报(自然科学版), 2016, 52(2): 235 .
[9] 涂 臻*,卢 晶 . 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究[J]. 南京大学学报(自然科学版), 2016, 52(2): 382 .
[10] 葛 勇1,孙宏祥1,2*,袁寿其1,夏建平1,管义钧1 . 含对称三角形腔的波导管中宽带低频隔声效应[J]. 南京大学学报(自然科学版), 2016, 52(4): 619 .