南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (4): 567–.

• •    下一篇

河南省新县姚冲钼矿床成因机制研究

展恩鹏1,李红超2,徐兆文1*,赵增霞1,邱文洪1,陈 伟1   

  • 出版日期:2016-07-23 发布日期:2016-07-23
  • 作者简介:1.内生金属矿床成矿机制研究国家重点实验室,南京大学地球科学与工程学院,南京,210023 ;2.河南省有色金属地质勘查总院,郑州,450052
  • 基金资助:
    基金项目:国家自然科学基金(40973030,41173050) 收稿日期:2016-05-28 *通讯联系人,E­mail:xzwen@nju.edu.cn

Study of formation mechanism from the Yaochong Mo deposit,Xinxian Country,Henan Province

Zhan Enpeng1,Li Hongchao2,Xu Zhaowen1*,Zhao Zengxia1,Qiu Wenhong1,Chen Wei1   

  • Online:2016-07-23 Published:2016-07-23
  • About author: 1.State Key Laboratory for Mineral Deposit,School of Earth Science and Engineering,Nanjing University,Nanjing,210023,China;2.Henan Province Bureau of Nonferrous Metals Geology and Mineral Resources,Zhengzhou,450016,China

摘要: 在详细的野外地质工作基础上,通过含矿石英中的流体包裹体,矿石硫、铅同位素,含矿石英氢、氧同位素等研究,探讨姚冲钼矿床成矿物质来源和形成机制.显微观察表明流体包裹体可分为LH2O+VH2O两相水溶液包裹体(Ⅰ型)、LH2O+LCO2+VCO2三相水溶液包裹体(Ⅱ型)和含子矿物的LH2O+LCO2+VCO2+S四相水溶液包裹体(Ⅲ型)三种类型;流体包裹体均一温度介于190 ℃~384 ℃(含子晶介于322 ℃~513 ℃)之间,盐度介于1.62 wt%~13.18 wt% NaCl eq之间;流体包裹体激光拉曼组分分析显示:Ⅰ型包裹体主要为H2O并含有少量CO2,Ⅱ型和Ⅲ型包裹体主要为H2O和CO2;计算密度介于0.641~0.965 g·cm-3之间,估算最大成矿深度约2 km.矿石硫同位素δ34SV-CDT值介于-2.89‰~-0.30‰之间,均值为-1.78‰.矿石铅同位素206Pb/204Pb比值介于16.363~17.344之间,均值为16.757;207Pb/204Pb比值介于15.298~15.473之间,均值为15.368;208Pb/204Pb比值介于37.324~37.854之间,均值为37.539.含矿石英的δDSMOW值介于-79.80‰~-64.30‰之间,均值-70.20‰;δ18OH2O值介于1.24‰~3.08‰之间,均值2.07‰.以上研究表明姚冲钼矿床形成于中高温浅成环境,成矿物质主要来源于下地壳溶融形成的岩浆,可能混有少量的地幔物质;成矿流体以岩浆水为主,混有大气降水,混合作用是矿床形成的主要机制.

Abstract: Based on field geological investigation,we studied microthermometry and Micro­laser Raman microprobe compositions for fluid inclusions from the Yaochong Mo deposit,as well as sulfur and lead isotopic compositions for ores,hydrogen and oxygen isotopic compositions for ore­bearing quartz.This paper discusses that the ore­forming materials resource and formation mechanism for the Yaochong Mo deposit.The microscopic observation shows that fluid inclusions are mainly consists of LH2O+VH2O fluid inclusions(type Ⅰ),LH2O+LCO2+VCO2 fluid inclusions(type Ⅱ)and LH2O+LCO2+VCO2+S fluid inclusions(type Ⅲ).Microthermometry indicates that the homogenization temperatures range from 190 ℃ to 384 ℃(daughter minerals­braring fluid inclusions range from 322 ℃ to 513 ℃)and their salinities range from 1.62 to 13.18 wt% NaCl eq.Micro­laser Raman spectroscopy shows that the type Ⅰ fluid inclusions mainly consist H2O and a small amount of CO2,type Ⅱ and type Ⅲ mainly contain H2O and CO2.We conclude that fluid density varies from 0.641 to 0.965 g·cm-3,and ore­forming depth is about 2 km.The δ34SV-CDT value of ores ranges from -2.89‰ to -0.30‰,with an average value of -1.78‰.206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb ratios of ores range from 16.363 to 17.344,15.298 to 15.473 and 37.324 to 37.854,with the average value of 16.757,15.368 and 37.539,respectively.The δDSMOW and δ18OH2O values of the ore­bearing quartz are -79.80‰~-64.30‰(with an average value -70.20‰),1.24‰~3.08‰(with an average value 2.07‰),respectively.The synthetic analytical results indicate that the Yaochong Mo deposit is formed in superficial and middle­high temperature environment,ore­forming materials mainly came from the melting crust and may be contaminated by mantle substances.The ore­forming fluid mainly came from magmatic water and then was contaminated by meteoric water,which means the mixing effect is the main mechanism of ore deposit formation.

[1] 杨泽强.河南商城县汤家坪钼矿辉钼矿铼-锇同位素年龄及地质意义.矿床地质,2007,26(3):298-295.(Yang Z Q.Re-Os isotopic ages of Tangjiaping molybdenum deposit in Shangcheng County,Henan and their geological significance.Mineral Deposits,2007,26(3):298-295.) [2] 杨泽强.河南省商城县汤家坪钼矿围岩蚀变与成矿.地质与勘探,2007,43(5):17-22.(Yang Z Q.Wall rock alteration and mineralization in the Tangjiaping Mo deposit of Shangcheng County,Henan province.Geology and Prospecting,2007,43(5):17-22.) [3] 杨泽强.北大别山商城汤家坪富钼花岗斑岩体地球化学特征及构造环境.地质论评,2009,55(5):745-752.(Yang Z Q.Geochemistry and tectonic setting of the Tangjiaping Mo­riched granodiorite porphyry in the northern Dabie Mountains.Geological Review,2009,55(5):745-752.) [4] 罗正传.大别山北麓钼金银多金属矿成矿规律及找矿方向.矿产与地质,2010,24(2):125-131.(Luo Z C.Metallogenic regularity and prospecting direction of Mo­Au­Ag polymetallic deposit of north piedmont of Dabieshan.Mineral Resources and Geology,2010,24(2):125-131). [5] 罗正传,李永峰,王义天等.大别山北麓河南新县大银尖钼矿床辉钼矿Re-Os同位素年龄及其意义.地质通报,2010,29(9):1349-1354.(Luo Z C,Li Y F,Wang Y T,et al.The molybdenite Re-Os age of Dayinjian molybdenum deposit in the northern margin of the Dabie Mountain,Xinxian area,Henan,China and its significance.Geological Bulletin of China,2010,29(9):1349-1354.) [6] 张怀东,史东方,郝越进等.安徽省金寨县沙坪沟斑岩型钼矿成矿地质特征.安徽地质,2010,20(2):104-108.(Zhang H D,Shi D F,Hao Y J,et al.Geological features of the Shapinggou porphyry molybdenum ore deposit,Jinzhai County,Anhui Province.Geology of Anhui,2010,20(2):104-108.) [7] 李红超,徐兆文,陆现彩等.河南新县大银尖钼矿床流体包裹体研究.高校地质学报,2010,16(2):236-246.(Li H C,Xu Z W,Lu X C,et al.Study on fluid inclusions of the Dayinjian Mo deposit in Xinxian Country,Henan Province,China.Geological Journal of China Universities,2010,16(2):236-246.) [8] 徐兆文,刘苏明,陈 伟等.河南省新县大银尖钼矿床同位素地球化学研究.地质论评,2013,59(5):983-992.(Xu Z W,Liu S M,Chen W,et al.An isotopic geochemical study on the Dayinjia molybdenum deposit,Xinxian Country,Henan Province.Geological Review,2013,59(5):983-992.) [9] Li H C,Xu Z W,Lu X C,et al.Constraints on timing and origin of the Dayinjian intrusion and associated molybdenum mineralization,western Dabie orogeny,central China.Internation Geology Review,2012,54:1579-1596. [10] Yang Y F,Chen Y J,Li N,et al.Fluid inclusion and isotope geochemistry of the Qian’echong giant porphyry Mo deposit,Dabie Shan,China:A case of NaCl­poor,CO2­rich fluid systems.Journal of Geochemical Exploration,2013,124:1-13. [11] Chen W,Xu Z W,Qiu W H,et al.Petrogenesis of the Yaochong granite and Mo deposit,Western Dabie orogen,eastern­central China:Constraints from zircon U­Pb and molybdenite Re­Os ages,whole­rock geochemistry and Sr­Nd­Pb­Hf isotopes.Journal of Asian Earth Sciences,2015,103:198-211. [12] 李 毅,胡海珠,陈丽娟等.大别山北麓姚冲钼矿床地质特征及找矿标志.地质与勘探,2013,49(2):280-288.(Li Y,Hu H Z,Chen L J,et al.Geological features and ore­searching indicators of the Yaochong Mo deposit in the northern Piedmont of the Dabie Shan.Geology and Prospecting,2013,49(2):280-288.) [13] 李 毅,张宗可,杨永千等.河南姚冲隐伏斑岩型钼矿床蚀变分带及成矿作用特征.矿产勘查,2013b,4(4):356-363.(Li Y,Zhang Z K,Yang Y Q,et al.Alteration zonation and metallogenesis of the Yaochong concealed porphyry molybdenum deposit,Henan Province.Mineral Exploration,2013,4(4):356-363.) [14] 张宗可,李 毅,陈 鹏等.河南姚冲隐伏斑岩型钼矿床地质特征及地球动力学背景.地质与资源,2015,24(3):226-232.(Zhang Z K,Li Y,Chen P,et al.Geology and geodynamic setting of the concealed porphyry molybdenum deposit in Yaochong,Henan Province.Geology and Resources,2015,24(3):226-232.) [15] 魏庆国,高昕宇,赵太平等.大别山北麓汤家坪花岗斑岩锆石LA­ICPMS U­Pb定年和岩石地球化学特征及其对岩石成因的制约.岩石学报,2010,26(5):1550-1562.(Wei Q G,Gao X Y,Zhao T P,et al.Petrogenesis of Tangjiaping granite porphyryin northern Dabie:Evidence from Zircon LA­ICPMS U­Pb dating and geochemical characteristics.Acta Petrologica Sinica,2010,26(5):1550-1562.) [16] 杨梅珍,曾建年,覃永军等.大别山北缘千鹅冲斑岩型钼矿床锆石U­Pb和辉钼矿Re­Os年代学及其地质意义.地质科技情报,2010,29(5):35-45.(Yang M Z,Zeng J N,Tan Y J,et al.LA­ICP­MS zircon U­Pb and molybdenite Re­Os dating for Qian’echong porphyry­type Mo deposit in Northern Dabie,China,and its geological significance.Geological Science and Technology Information,2010,29(5):35-45.) [17] 罗正传,李永峰,李俊平等.豫南大别山北麓姚冲钼矿床辉钼矿Re­Os同位素年龄及其地质意义.地质学报,2013,87(9):1359-1369.(Luo Z C,Li Y F,Li J P,et al.Molybdenite Re­Os age of the Yaochong molybdenum deposit in the northern margin of the Dabie Mountain and its geological significance.Acta Geological Sinica,2013,87(9):1359-1369.) [18] 刘清泉,邵拥军,张智慧等.大别山姚冲花岗岩锆石U­Pb年龄、Hf同位素及地质意义.中国有色金属学报,2015,25(2):479-491.(Liu Q Q,Shao Y J,Zhang Z H,et al.Zircon U­Pb ages,Hf isotope characteristics and its implication of granite from Yaochong,Dabie Orogen,China.The Chinese Journal of Nonferrous Metals,2015,25(2):479-491.) [19] 刘清泉,陈昕梦,李 冰等.河南姚冲钼矿床S、Pb同位素组成及地质意义.金属矿山,2014,2014(5):114-117.(Liu Q Q,Chen X M,Li B,et al.S and Pb isotope compositions and their geological implications of Yaochong Mo deposit in Henan Province.Metal Mine,2014,2014(5):114-117.) [20] 王 玭,杨永飞,糜 梅等.河南省新县姚冲钼矿床流体包裹体研究.岩石学报,2013,29(1):107-120.(Wang P,Yang Y F,Mi M,et al.Fluid evolution of the Yaochong porphyry Mo deposit,Xinxian Country,Henan Province,China.Acta Petrologica Sinica,2013,29(1):107-120.) [21] Bodnar R J.Revised equation and table for determining the freezing point depression of H2O­NaCl solutions.Geochimica et Cosmochimica Acta,1993,57:683-684. [22] Collins P L F.Gas hydrates in CO2­bearing fluid inclusions and the use of freezing data for estimation of salinity.Economic Geology,1979,74:1435-1444. [23] Brown P E.Flincor:A microcomputer program for the reduction and investigation of fluid­inclusion data.American Mineralogist,1989,74:1390-1393. [24] Todt W,Cliff R A,Hanser A,et al.Re­calibration of NBS lead standards using a 202Pb+205Pb double spike.Terra Abstracts,1993,5:396. [25] Clayton R N,Mayeda T K.The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis.Geochimica et Cosmochimica Acta,1963,27:43-52. [26] Roedder E.Fluid inclusion.Reviews in Mineralogy,1984,12:1-644. [27] 卢焕章,范宏瑞,倪 培等.流体包裹体.北京:科学出版社,2004,1-487.(Lu H Z,Fan H R,Ni P,et al.Fluid inclusion.Beijing:Science Press,2004,1-487.) [28] 陈 伟,徐兆文,李红超等.河南新县宝安寨钼矿床流体包裹体研究.南京大学学报(自然科学),2012,48(6):710-720.(Chen W,Xu Z W,Li H C,et al.Fluid inclusions of the Baoanzhai Mo deposit in southern Henan Province,eastern China.Journal of Nanjing University(Natural Sciences),2012,48(6):710-720.) [29] Clayton R N,O’Neil J R,Mayeda T K.Oxygen isotope exchange between quartz and water.Journal of Geophysical Research,1972,77:3057-3067. [30] Ohmoto H.Systematic of sulfur and carbon isotopes in hydrothermal ore deposit.Economic Geology,1972,67:551-579. [31] Ohmoto H,Rye R O.Isotopes of sulfur and carbon.Barnes H L.Geochemistry of hydrothermal ore deposit.New York:John Wiley and Sons,1979,509-567. [32] Hoefs J.Stable geochemistry.The 2nd Edition.New York:Springer­Verlag,1980. [33] Doe B R,Zartman H E.Plumbotectonic,the Phanerozoic.In:Barnes HL(ed.).Geochemistry of Hydrothermal Ore Deposits.2nd Edition.New York:John Wiley,1979,509-567. [34] Zartman H E,Doe B R.Plumbotectonics:The model.Tectonophysics,1981,75:135-162. [35] 张德会.流体的沸腾和混合在热液成矿中的意义.地球科学进展,1997,12(6):546-552.(Zhang D H.Some new advances in ore­forming fluid geochemistry on boiling and mixing of fluids during the process of hydrothermal deposits.Advance in Earth Sciences,1997,12(6):546-552.) [36] Robinson R W,Norman D I.Mineralogy and fluid inclusion study of the Southern Amethyst vein system Creedee mining district,Colorado.Economic Geology,1984,79:439-477. [37] Hayba D O,Bethke P M,Healed P,et al.Geologic,mineralogic and geochemical characteristics of volcanic­hosted epithermal precious­metal deposits.Reviews in Economic Geology,1985,2:129-167. [38] Sheppard S M F.Characterization and isotope variation in natural waters.In:Valley J W,Taylor H P Jr,O’Neil J R.Stable Isotopes in High Temperature Geological Processes.Reviews in Mineralogy and Geochemistry,1986,16:165-183. [39] Hedenquist J W,Lowenstern J B.The role of magmas in the formation of hydrothermal ore deposits.Nature,1994,370:519-527. [40] 郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000,1-316.(Zheng Y F,Chen J F.Stable isotope geochemistry.Beijing:Science Press,2000,1-316). [41] Taylor H P.Oxygen and hydrogen isotope relationships in hydrothermal ore deposits.Geochemistry of Hydrothermal Ore Deposits,1979. [42] 毛景文,谢桂青,李晓峰等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,2004,11(1):45-55.(Mao J W,Xie G Q,Li X F,et al.Mesozoic large scale mineralization and multiple lithospheric extension in South China.Earth Science Frontiers,2014,11(1):45-55.)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!