变权重粒子追踪方法在裂隙网络溶质运移模拟中的应用

蒋建国*,吴吉春

南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (3) : 464-469.

PDF(1322441 KB)
PDF(1322441 KB)
南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (3) : 464-469.

 变权重粒子追踪方法在裂隙网络溶质运移模拟中的应用

  • 蒋建国*,吴吉春
作者信息 +

 Modeling solute transport in fracture network by particle-­tracing method with variable weights

  •  Jiang Jianguo*,Wu Jichun
Author information +
文章历史 +

摘要

 粒子追踪方法是模拟裂隙介质地下水中溶质运移的常用方法.在此方法中,模拟点的浓度正比访问此处的粒子数.然而,它在低浓度处计算效率很低.在溶质浓度较低的地方,访问到此处的粒子数很少,导致模拟结果剧烈波动,甚至无法模拟.提出了一种可变权重的粒子追踪方法,浓度的大小正比于访问此处的所有粒子的权重和.通过权重的调节,模拟区的各点的访问粒子数大致相等.通过这种变权重的方案,可以消除低浓度处模拟结果的剧烈波动,大幅提高粒子追踪方法的模拟精度.

Abstract

 Particle­tracing method is usually used to simulate the solute transport in fracture media.In this method,the concentration at one point is proportional to the number of particles visiting this point.However,this method is rather inefficient at the points with small concentration.Few particles visit these points,which leads to violent oscillation or gives zero value of concentration.In this paper,we proposed a particle­tracing method with variable weights.The concentration at one point is proportional to the sum of the weights of the particles visiting it.By adjusting weights,the number of visiting particles distributes evenly in the whole range.Through this variable weights scheme,we can eliminate the violent oscillation and increase the accuracy of orders of magnitudes.

引用本文

导出引用
蒋建国*,吴吉春.  变权重粒子追踪方法在裂隙网络溶质运移模拟中的应用[J]. 南京大学学报(自然科学版), 2016, 52(3): 464-469
 Jiang Jianguo*,Wu Jichun.  Modeling solute transport in fracture network by particle-­tracing method with variable weights
[J]. Journal of Nanjing University(Natural Sciences), 2016, 52(3): 464-469

参考文献

[1] Berkowitz B,Scher H.Anomalous transport in random fracture networks.Physical Review Letters,1997,79(20):4038.
[2] Edery Y,Guadagnini A,Scher H,et al.Origins of anomalous transport in heterogeneous media:Structural and dynamic controls.Water Resoures Research,2014,50(2):1490-1505.
[3] Tsang Y W,Tsang C F.A particle­tracking method for advective transport in fractures with diffusion into finite matrix blocks.Water Resources Research,2001,37(3),831-835.
[4] 薛禹群,谢春红.地下水数值模拟.北京:科学出版社,2007,189-193.(Xue Y Q,Xie C H.Numerical simulation for groundwater.Beijing:Science Press,2007,189-193.)
[5] Bijeljic B,Raeini A,Mostaghimi P,et al.Predictions of non­fickian solute transport in different classes of porous media using direct simulation on pore­scale images.Physical Review E,2013,87(1):013011.
[6] Zhang X,Lv M.Persistence of anomalous dispersion in uniform porous medium demonstrated by pore­scale simulations.Water Resources Research,2007,43:W07437.
[7] Kang P K,LeBorgne T,Dentz M,et al.Impact of velocity correlation and distribution on transport in fractured media:Field evidence and theoretical model.Water Resources Research,2015,51(2):940-959.
[8] Makedonska N,Painter S L,Bui Q M,et al.Particle tracking approach for transport in three­dimensional discrete fracture networks.Computational Geosciences,2015,19(5):1123-1137.
[9] Dentz M,Kang P K,Le Borgne T.Continuous time random walks for non­local radial solute transport.Advances in Water Resources,2015,82:16-26.
[10] LaBolle E M,Quastel J,Fogg G E.Random walk simulation of transport in heterogeneous porous media:Local mass conservation problem and implementation methods.Water Resources Research,1996,32:583-593.
[11] Srinivasan S,Tartakovsky D M,Dentz M,et al.Random walk particle tracking simulations of non­Fickian transport in heterogeneous media.Journal of Computational Physics,2010,229:4304-4314.
[12] Zhang Y,Benson D,Meerschaert M,et al.On using random walks to solve the space­fractional advection­dispersion equations.Journal of Statistical Physics,2006,123:89-110.
[13] Grassberger P.Pruned­enriched rosenbluth method:Simulations of θ polymers of chain length up to 1000000.Physical Review E,1997,56(3):3682.
[14] Prellberg T,Krawczyk J.Flat histogram version of the pruned and enriched rosenbluth method.Physical Review Letters,2004,92(12):120602.
[15] Jiang J,Wu J.Simulation of continuous­time random walks by the pruned enriched method.Physical Review E,2011,84(3):036710.
[16] Bijeljic B,Muggeridge A H,Blunt M J.Pore­scale modeling of longitudinal dispersion.Water Resources Research,2004,40(11):W11501.

基金

 国家自然科学基金(41030746,41172207,41102147)

PDF(1322441 KB)

1964

Accesses

0

Citation

Detail

段落导航
相关文章

/