南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (1): 86–95.

• • 上一篇    下一篇

淮河流域平原区浅层地下水硝酸盐特殊脆弱性评价

廖曼1,2, 闫雅妮1,2,郑倩琳1,2,王妍妍1,2,王智真1,2,马腾1,2*   

  • 出版日期:2016-01-27 发布日期:2016-01-27
  • 作者简介:1.中国地质大学(武汉)生物地质与环境地质国家重点实验室,湖北 武汉 430074;2.中国地质大学(武汉)环境学院,湖北 武汉 430074)
  • 基金资助:
    基金项目国家水体污染控制与治理科技重大专项收稿日期(通讯联系人E-mail: mateng@cug.edu.cn

Study on specific vulnerability of nitrate in shallow groundwater in Huai River plain area

Liao Man1,2, Yan Yani1,2, Zheng Qianlin1,2,Wang Yanyan1,2, Wang Zhizhen1,2,Ma Teng1,2*   

  • Online:2016-01-27 Published:2016-01-27
  • About author:(1.State key Laboratory of Biogeology and Environmental Geology, China University of Geosciences(Wuhan),Wuhan 430074; 2. School of Environment Studies, China University of Geoscience(Wuhan),Wuhan 430074,China)

摘要: 特殊脆弱性评价是地下水硝酸盐污染区域性防治的前提。本文结合淮河流域水文地质条件和硝酸盐污染特点,对传统地下水特殊脆弱性模型DRASTIC进行了改进,建立了基于地下水位埋深(D)、净补给量(R)、含水层富水性(A)、土壤介质(S)、包气带介质(I)、土地利用类型(L)、地下水开采量(E)为评价因子的DRASILE模型,采用经验值与实际硝酸盐浓度共同确定体系给分表,利用二层次的层次分析法确定各指标的权重,最终制定了淮河流域平原区浅层地下水硝酸盐特殊脆弱性评价图。为了检验结果的可靠性,在SPSS21.0用F统计量和皮尔森相关系数(p)分别进行指标选取和脆弱性分值准确性的检验,最终通过显著性检验且相关系数达到0.559。本研究为地下水特殊脆弱性评价提供了新思路。

Abstract: Specific vulnerability assessment is the basis of regional control on nitrate pollution in groundwater. In order to improve the traditional groundwater vulnerability model (DRASTIC), this study combined hydrogeological data with nitrate pollution/pollutant characteristics and built DRASILE model to assess the specific vulnerability of shallow groundwater nitrate in Huai River plain area, which involves depth to the water table(D), net recharge(R),water yield property of aquifer(A), soil type(S), impact of the vadose zone(I), land use type(L), groundwater exploitation(E). The empirical value and the actual nitrate concentration were used to determine the rating scale and the weights of the indexes were determined by using the analytic hierarchy process of two levels. The specific vulnerability map of shallow groundwater nitrate in Huai River plain was created. F statistic and were used in SPSS21.0 respectively to test the accuracy of the index and vulnerability values. The results are encouraging and this study provides a new train of thought for groundwater specific vulnerability assessment

[1].National research council (Etats-Unis). Water science and technology board, Commission on geosciences, environment, and resources (Etats-Unis)., Committee on techniques for assessing ground water vulnerability (Etats-Unis). Ground water vulnerability assessment: contamination potential under conditions of uncertainty. National Academy Press, 1993.
[2].Awawdeh M M, Jaradat R A. Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arabian Journal of Geosciences, 2010, 3(3):273-282.
[3].朱利霞, 刘运涛, 张东. 淮河中上游农业区浅层地下水固有脆弱性评价. 安全与环境学报, 2010 (4): 64-68.
[4].Aller L, Bennett T, Lehr J H, et al. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeological Settings. Journal of the Geological Society of India, 1987, 29.
[5].Gogu R C, Dassargues A. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental geology, 2000, 39(6): 549-559.
[6].Assaf H, Saadeh M. Geostatistical assessment of groundwater nitrate contamination with reflection on DRASTIC vulnerability assessment: the case of the Upper Litani Basin, Lebanon. Water resources management, 2009, 23(4): 775-796.
[7].刘春华, 张光辉, 王威等. 区域地下水系统防污性能评价方法探讨与验证--以鲁北平原为例. 地球学报, 2014, 35(2): 217-222.

[8].张丽君. 地下水脆弱性和风险性评价研究进展综述. 水文地质工程地质, 2006, 33(6): 113-119.

[9].储茵. 合肥市地下水硝酸盐氮污染程度及其防治对策的研究. 安徽农业大学学报, 2001, 01期(1):98-101.
[10].陈新明, 马腾, 蔡鹤生等. 地下水氮污染的区域性调控策略. 地质科技情报, 2013, 32(006): 130-143.
[11].高磊. 淮河流域典型污染物多介质累积特征与生态风险评价. 华东师范大学, 2008.
[12].单楠,徐静,阮晓红等. 淮河流域地下水资源保护专项规划. 南京大学学报(自然科学),2014.
[13].葛伟亚, 叶念军, 龚建师等. 淮河流域平原区地下水资源合理开发利用模式研究 地下水, 2007, 29(5): 37-40.

[14].王妍妍. 铵态氮在弱透水层中的迁移转化规律研究. 硕士论文. 武汉: 中国地质大学, 2014.

[15].邹桂英. 淮河流域高癌区水体NO3--N和NO2--N时空变化及来源.博士论文. 河南大学, 2011.
[16].武强, 王志强, 赵增敏,等. 油气田区承压含水层地下水污染机理及其脆弱性评价. 水利学报, 2006, 37(7):851-857.
[17].雷静, 张思聪. 唐山市平原区地下水脆弱性评价研究. 环境科学学报, 2003, 23:94-99.
[18].叶念军,刘红樱.淮河流域环境地质综合研究报告.南京:南京地质矿产研究所,2009: 59-219
[19].杨木壮, 历艳君, 谢鸿宇等. 广州地下水资源潜力与脆弱性评价. 北京:气象出版社, 2011. 5-83
[20].Levallois P, Thériault M, Rouffignat J et al. Groundwater contamination by nitrates associated with intensive potato culture in Quebec. Science of the Total Environment, 1998, 217(1):91-101.
[21].张保辉.中国1:100万土壤类型分布图[EB/OL].http://www.escience.gov.cn/.
[22].张云, 张胜, 刘长礼,等. 包气带土层对氮素污染地下水的防护能力综述与展望. 农业环境科学学报, 2006, S1期(13).
[23].邓欧平, 孙嗣旸, 吕军. 基于ArcSWAT模型的长乐江流域非点源氮素污染源识别和分析. 环境科学, 2013, 第4期:1284-1290.
[24].许叔明. 河南省1:150万农业资源、土壤背景数据库.[EB/OL].http://www.geodata.cn.
[25].孙艳伟. 石羊河流域地下水系统脆弱性研究.硕士论文. 西北农林科技大学, 2007.
[26].Baalousha H. Vulnerability Assessment For The Gaza Strip, Palestine Using Drastic[J]. Environmental Geology, 2006, 50(3):405-414.
[27].Assaf H, Saadeh M. Geostatistical assessment of groundwater nitrate contamination with reflection on DRASTIC vulnerability assessment: the case of the Upper Litani Basin, Lebanon. Water resources management, 2009, 23(4): 775-796.
[28].Huan H, Wang J, Teng Y. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China. Science of the Total Environment, 2012, 440(3):14–23.
[29].徐建华. 现代地理学中的数学方法.高等教育出版社,1996.
[30].黄栋. 北京市平原区地下水脆弱性研究.硕士论文. 首都师范大学, 2009.
[31].向东进,李宏伟、刘小雅. 实用多元统计分析. 武汉,中国地质大学出版社,2005.
[32].闫雅妮, 王妍妍, 郑倩琳等. 地下水硝酸盐特殊脆弱性评价:以沙颍河流域为例. 环境科学与技术, 2015, 08期.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!