南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (1): 5–15.

• • 上一篇    下一篇

湖泊水体中氮的生物地球化学过程及其生态学意义

张亚平,2,万宇1,2,聂青3,阮晓红1,2*,王子健4   

  • 出版日期:2016-01-27 发布日期:2016-01-27
  • 作者简介:(1.表生地球化学教育部重点实验室,南京,210023;2. 南京大学地球科学与工程学院,南京,210023;3. 江苏省水文水资源勘测局,南京,210029;4. 中国科学院生态环境研究中心,北京,100085)
  • 基金资助:
    基金项目:国家自然科学基金重点基金(41230640),江苏省水利科技项目
    收稿日期:2015-12-26
    *通讯联系人,E-mail:ruanxh@nju.edu.cn

Biogeochemical process and its ecological significance of nitrogen in the lake systems

Zhang Yangping1,2, Wan Yu1,2, Nie Qing3, Ruan Xiaohong1,2*,Wang Zijian4   

  • Online:2016-01-27 Published:2016-01-27
  • About author:(1.Key Laboratory of Surficial Geochemistry, Ministry of Education, Nanjing, 210046; 2 School of Earth Sciences and Engineering of Nanjing University, Nanjing, 210023; 3. Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, 210029; 4. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085)

摘要: 本文通过大量文献资料和实际数据分析,讨论了湖泊水体中氮元素的生物地球化学过程及其生态学意义。以太湖流域为例分析了流域内氮元素的主要来源及不同来源的相对贡献,采用多年入湖河流断面水文和水质监测数据分析了氮元素通过河流的入湖通量的年变化规律。分析了太湖水体氮的赋存特征,利用氮形态转化的文献资料,讨论了湖泊水体和沉积物界面不同氮的形态转化规律、控制形态转化的物理化学条件及其在水-沉积物界面传输的主要水化学过程。结合湖泊富营养化机制,讨论了氮元素对光合藻类的限制性作用,氮磷比调节以及湖泊食物链中的能量传递。围绕湖泊富营养化中氮的生物地球化学过程及其生态学意义,提出未来需要重点解决的科学问题。

Abstract: This paper discusses the biogeochemical processes of nitrogen and their ecological importance in shallow lake systems,based on data analysis as well as literature.Taking Taihu Lake for instance,we analyzed nitrogen flux of various sources,and the variation of daily load of nitrogen by the monitoring data of river hydrology and water quality.In addition,after reviewing existing studies on nitrogen transformation,we systematically discussed the corresponding controlling physical and chemical conditions of the transformation.In terms of the mechanism of lakes eutrophication,we discussed the nitrogen cycle in lake systems,the restrictive effects on the algae of nitrogen,ratio of nitrogen to phosphorus,and on the nitrogen transformation.Before concluding this study,we put forward key questions for future with respect to the biogeochemical processes of nitrogen during the eutrophication and its cological significance.

[1] 杨达源, 李徐生,张振克. 长江中下游湖泊的成因与演化. 湖泊科学, 2000, 12(03): 226-232.(Yan G D Y, Li X S, Zhang Z K, Lake evolution along middle-lower reaches of the yangtze river. Journal of Lake Sciences, 2000, 12(03): 226-232.)
[2] 王东红, 黄清辉, 王春霞等.长江中下游浅水湖泊中总氮及其形态的时空分布. 环境科学, 2004(S1): 27-30.(Wang D H, Huang Q H, Wang C X, et al., Temporal and spatial distribution of total nitrogen and its species in shallow eutrophic lakes of china, Environmental Science, 2004, (S1):27-30)
[3] 秦伯强. 长江中下游浅水湖泊富营养化发生机制与控制途径初探. 湖泊科学, 2002, 14(03): 193-202.(Qin B. Approaches to Mechanisms and Control of Eutrophication of Shallow Lakes in the Middle and Lower Reaches of the Yangze River. Journal of Lake Sciences. 2002, 14(03):193-202.)
[4] Harris G P. Comparison of the biogeochemistry of lakes and estuaries: Ecosystem processes, functional groups, hysteresis effects and interactions between macro- and microbiology. Marine and Freshwater Research, 1999, 50(8): 791-811.
[5] Cross W F, Benstead J P, Frost P C, et al. Ecological stoichiometry in freshwater benthic systems: Recent progress and perspectives. Freshwater Biology, 2005, 50(11): 1895-1912.
[6] Eghball B, Power J F, Gilley J E, et al. Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure. Journal of Environmental Quality, 1997, 26(1): 189-193.
[7] Fitzhugh R D, Driscoll C T, Groffman P M, et al. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry, 2001, 56(2): 215-238.
[8] Wu L Q, Zhu H, Ke J, et al. Research on the characteristics of soil nitrogen runoff loss in upland rice field. Research Journal of Chemistry and Environment, 2013, 17: 128-133.
[9] Perakis S S. Nitrogen loss from unpolluted south american forests mainly via dissolved organic compounds. Nature, 2002, 415(6870): 416-419.
[10] 王冰. 废水中氨氮和总氮的相关性分析研究. 环境科学与管理, 2015, 40(03): 107-109.(Wang B Correlation Analysis between Ammonia Nitrogen and Total Nitrogen in Wastewater. Environmental Science and Management, 2015, 40(03). 107-109.)
[11] 朱环, 李怀正, 叶建锋等.上海市居民生活用水主要污染物产生系数的研究. 中国环境科学, 2010, 30(01): 37-41.(Zhu H, Li H Z, Ye J F, et al., Coefficients of major pollutants in domestic sewage in Shanghai. China Environmental Science, 2010, 30(1): 37~41.)
[12] 张德刚, 汤利, 陈永川等.滇池流域典型城郊村镇排放污水氮、磷特征分析. 农业环境科学学报, 2007, 26(06): 2245-2250.(Zhang D G, Tang L, Chen Y C, et al., Discharge Rule and Character of Nitrogen and Phosphorus in Household Wastewater from Suburb Typical Region in Dianchi Lake Catchment. Journal of Agro-Environment Science, 2007, 26(06): 2245-2250.)
[13] 郑丹楠, 王雪松, 谢绍东等. 2010年中国大气氮沉降特征分析. 中国环境科学, 2014, 34(05): 1089-1097.(Zheng DN, Wang X S, Xie S D, et al., Simulation of atmospheric nitrogen deposition in China in 2010. China Environmental Science, 2014, 34(05):1089-1097.)
[14] 胡开明, 逄勇,王华. 太湖湖体总氮平衡及水质可控目标. 水科学进展, 2012, 23(04): 555-562.(Hu K M, Pang Y, Wang H, On the totao nitrogen balance and water quality controllable target in Taihu Lake. Advances in Water Science, 2012, 23(4): 555-562.)
[15] 吴庆乐, 阮晓红, 吴朝明等.太湖西部河湖氮污染物来源及转化途径分析. 环境科学学报, 2015, 35(12): 3883-3889.(Wu Q L, Ruan X H, Wu C M, et al., Analysis of sources and transformation of nitrogen as a contaminant in the river and lake in the western region of the Taihu Lake basin, 2015,35(12):3883-3889.)
[16] 李恒鹏, 杨桂山, 黄文钰等.太湖上游地区面源污染氮素入湖量模拟研究. 土壤学报, 2007, 44(06): 1063-1069.(Li H, Yang G S, Huang W J, et al., simulating fluxes of non-point source nitrogen from upriver region of taihu basin. Acta Pedologica Sinica, 2008, 44(6):1063-1069.)
[17] 郑丙辉. “十二五”太湖富营养化控制与治理研究思路及重点. 环境科学研究, 2014(07): 683-687.(Zheng B H. Research system design for eutrophication control and management of Taihu Lake during the 12 th Five-Year Plan。Research of Environmental Sciences, 2014, 27( 7) : 683-687.)
[18] Bronk D A, Glibert P M ,Ward B B. Nitrogen uptake, dissolved organic nitrogen release, and new production. Science, 1994, 265(5180): 1843-1846.
[19] Miller T R, Beversdorf L, Chaston S D, et al. Spatiotemporal molecular analysis of cyanobacteria blooms reveals microcystis-aphanizomenon interactions. Plos One, 2013, 8(9).
[20] Ferber L R, Levine S N, Lini A, et al. Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biology, 2004, 49(6): 690-708.
[21] 张波,张路. 太湖水体固氮速率时空变化. 环境科学学报, 32.(Zhang B, Zhang L, Spatial-seasonal variations of nitrogen fixation of water column in Taihu Lake. Acta Scientiae Circumstantiae, 2015)
[22] 张波, 杜应旸, 陈宇炜等.太湖流域典型河流沉积物的反硝化作用. 环境科学学报, 2012(08): 1866-1873.
[23] Burgin A J, Hamilton S K, Jones S E, et al. Denitrification by sulfur-oxidizing bacteria in a eutrophic lake. Aquatic Microbial Ecology, 2012, 66(3): 283-293.
[24] 张路, 范成新, 王建军等.太湖水土界面氮磷交换通量的时空差异. 环境科学, 2006, 27(08): 1537-1543.(Zhang L, Fang C X, Wang J J, et al., Space-time dependent variances of ammonia and phosphorus flux on sedimentwater interface in Lake Taihu. Environmental Science, 2006, 27(08): 1537-1543.)
[25] Han H J, Lu X X, Burger D F, et al. Nitrogen dynamics at the sediment-water interface in a tropical reservoir. Ecological Engineering, 2014, 73: 146-153.
[26] 吴雅丽, 许海, 杨桂军等.太湖水体氮素污染状况研究进展. 湖泊科学, 2014, 26(01): 19-28.(Wu Y L, Xu H, Yang G J, Progress in nitrogen pollution research in Lake Taihu, Journal of Lake Sciences, 2014, 26(1):19-28.)
[27]陈小锋, 揣小明, 曾巾等.太湖氮素出入湖通量与自净能力研究. 环境科学, 2012, 33(07): 2309-2314.(Chen X F, Chuai X M, Zeng J, et al., Nitrogenous Fluxes and Its Self-Purification Capacity in Lake Taihu, Environmental Science, 2012, 33(7):2309-2314)
[28] Huo S, Zhang J, Xi B, et al. Distribution of nitrogen forms in surface sediments of lakes from different regions, china. Environmental Earth Sciences, 2014, 71(5): 2167-2175.
[29] 赵林林, 朱广伟, 顾钊等.太湖水体氮、磷赋存量的逐月变化规律研究. 水文, 2013, 33(05): 28-33+45.(Zhao L L, Zhu G W, Gu Z, et al., Monthly Variation of Nitrogen and Phosphorus Volume in Taihu Lake, China, Journal of China Hydrology, 2013, 33(5):28-33+45.)
[30] Sun C C, Shen Z Y, Xiong M, et al. Trend of dissolved inorganic nitrogen at stations downstream from the three-gorges dam of yangtze river. Environmental Pollution, 2013, 180: 13-18.
[31] Dalsgaard T, Canfield D E, Petersen J, et al. N2 production by the anammox reaction in the anoxic water column of golfo dulce, costa rica. Nature, 2003, 422(6932): 606-608.
[32] Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41): 14683-14688.
[33] Laverman A M, Canavan R W, Slomp C P, et al. Potential nitrate removal in a coastal freshwater sediment (haringvliet lake, the netherlands) and response to salinization. Water Research, 2007, 41(14): 3061-3068.
[34] Moore T A, Xing Y, Lazenby B, et al. Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater. Environ Sci Technol, 2011, 45(17): 7217-7225.
[35] Wu Y, Xiang Y, Wang J, et al. Molecular detection of novel anammox bacterial clusters in the sediments of the shallow freshwater lake taihu. Geomicrobiol J, 2012, 29(9): 852-859.
[36]徐徽, 张路,商景阁. 太湖梅梁湾水土界面反硝化和厌氧氨氧化. 湖泊科学, 2009, 21(6): 775-781.(Xu H, Zhang L, Shang J, Denitrification and anammox on the sediment-water interface in the Meiliang Bay of Lake Taihu, Journal of Lake Sciences, 2009, 21(6):775-781)
[37] Gardner W ,McCarthy M. Nitrogen dynamics at the sediment–water interface in shallow, sub-tropical florida bay: Why denitrification efficiency may decrease with increased eutrophication. Biogeochemistry, 2009, 95(2): 185-198.
[38] Yagi J M, Suflita J M, Gieg L M, et al. Subsurface cycling of nitrogen and anaerobic aromatic hydrocarbon biodegradation shown by nucleic acid and metabolic biomarkers. Appl. Environ. Microbiol., 2010: AEM.00172-10.
[39] Roberts K L, Kessler A J, Grace M R, et al. Increased rates of dissimilatory nitrate reduction to ammonium (dnra) under oxic conditions in a periodically hypoxic estuary. Geochimica Et Cosmochimica Acta, 2014, 133: 313-324.
[40] Ye W, Liu X, Lin S, et al. The vertical distribution of bacterial and archaeal communities in the water and sediment of lake taihu. Fems Microbiology Ecology, 2009, 70(2): 263-276.
[41] Sun X, Wang A L, Yang L Y, et al. Spatial distribution of ammonia-oxidizing archaea and bacteria across eight freshwater lakes in sediments from jiangsu of china. Journal of Limnology, 2014, 73(2): 312-324.
[42] Casciotti K L ,Buchwald C. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification. Frontiers in Microbiology, 2012, 3.
[43] Xue D, Botte J, De Baets B, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research, 2009, 43(5): 1159-1170.
[44] Interlandi S J ,Kilham S S. Limiting resources and the regulation of diversity in phytoplankton communities. Ecology, 2001, 82(5): 1270-1282.
[45] 吴功果, 倪乐意, 曹特等.洱海水生植物与浮游植物的历史变化及影响因素. 水生生物学报, 2013, 37(05): 912-914+918+915-917.(Wu GG, Ni LY, Cao T, et al., Patterns and controls of dynamics of macrophytes and phytoplankton changes in Lake Erhai from 1977 to 2009, Acta Hydrobiologica Sinica, 2013, 37(3):912-918.)
[46] Drakare S, Blomqvist P, Bergstrom A K, et al. Relationships between picophytoplankton and environmental variables in lakes along a gradient of water colour and nutrient content. Freshwater Biology, 2003, 48(4): 729-740.
[47] Song X, Liu Z, Yang G, et al. Effects of resuspension and eutrophication level on summer phytoplankton dynamics in two hypertrophic areas of lake taihu, china. Aquatic Ecology, 2010, 44(1): 41-54.
[48]范成新. 太湖水体生态环境历史演变. 湖泊科学, 1996, 8(04): 297-304.(Fan CX, Historical Evolution of Water Ecological Setting in Taihu Lake, Journal of Lake Science, 1996, 8(04):297-304)
[49] 钱奎梅, 陈宇炜, 宋晓兰. 太湖浮游植物优势种长期演化与富营养化进程的关系. 生态科学, 2008, 27(02): 65-70.(Qian KM, Chen YW, Song XL, Long-term development of phytoplankton dominant species related to eutrophicarion in Lake Taihu, Ecological Science, 2008, 27(02):65-70.)
[50] Guo L. Ecology - doing battle with the green monster of taihu lake. Science, 2007, 317(5842): 1166-1166.
[51]吴轩浩, 高佳逸, 严杨蔚等.无机氮和有机氮对铜绿微囊藻生长和产毒影响的比较. 环境科学学报, 2015, 35(03): 677-683.(Wu XH, Gao JY, Yan YW, et al., Comparison of inorganic nitrogen and organic nitrogen on the growth and microcystin production of Microcystis aeruginosa, Acta Scientiae Circumstantiae, 2015, 35(03):677-683.)
[52] 唐汇娟, 谢平, 刘丽等.武汉东湖浮游植物群落结构的时空变化与环境因子的关系. 中山大学学报(自然科学版), 2008, 47(03): 100-104.(Tang HJ, Xie P, Liu L, et al., Temporal and Spatial Variation of Phytoplankton Structure and Its Relationship with Environmental Factors in Lake Donghu, Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(03):100-104)
[53]Kangro K, Olli K, Tamminen T, et al. Species-specific responses of a cyanobacteria-dominated phytoplankton community to artificial nutrient limitation in the baltic sea. Marine Ecology Progress Series, 2007, 336: 15-27.
[54] 丰茂武, 吴云海, 冯仕训等.不同氮磷比对藻类生长的影响. 生态环境, 2008, 17(05): 1759-1763.(Feng MW, Wu YH, Feng SX, et al., Effect of different N/P ratios on algal growth, Ecology & Environment, 2008, 17(05):1759-1763.)
[55]孟顺龙, 陈家长, 胡庚东等. 2009年秋季长江安徽-江苏段浮游植物群落的种类组成与空间特征(英文). Agricultural Science & Technology, 2012, 27(01): 220-226.(Meng S L, Chen J C, Hu G D, et al., Species Composition and Spatial Characteristics of the Phytoplankton Community in the Anhui-Jiangsu Reach of Yangtze River in Autumn,2009, Chinese Agricultural Science Bulletin, 2011, 27(3):391-398)
[56] 孙凌, 金相灿, 钟远等.不同氮磷比条件下浮游藻类群落变化. 应用生态学报, 2006, 17(07): 1218-1223.(Sun L, Jin X C, Zhong Y, et al., Changes of algal communities in water body with different proportions of nitrogen and phosphorus. Chinese Journal Of Applied Ecology, 2006, 17(7): 1218-1223.)
[57] Yunev O A, Carstensen J, Moncheva S, et al. Nutrient and phytoplankton trends on the western black sea shelf in response to cultural eutrophication and climate changes. Estuarine Coastal and Shelf Science, 2007, 74(1-2): 63-76.
[58] 叶琳琳,张 民,孔繁翔等.水生生态系统蓝藻固氮作用研究进展与展望.湖泊科,2014,26(1):9-18
[59] 冯露露, 李正魁, 周涛. 太湖浮游植物和各形态无机氮的时空分布特征. 湖泊科学, 2012, 24(05): 739-745.(Feng L L, Li Z K , Zhou T, Temporal and spatial distributions of phytoplankton and various forms of inorganic nitrogen in Lake Taihu. Journal of Lake Science 2012,24(05): 739-745.)
[60] Lin Y,Harrison P J. Research on red tide occurrences using enclosed experimental ecosystems in west xiamen harbor, china: Relationship between various factors and red tide occurrences. Chinese Journal of Oceanology and Limnology, 2000, 18(2): 148-156.
[61] 徐立, 吴瑜端. 有机氮化合物对海洋浮游植物生长的影响. 厦门大学学报(自然科学版), 1995(05): 824-828.( Xu L, Wu YD, Effect of Organic Nitrogen on the Growth of Marine Phytoplanton, Journal of Xiamen University(Natural Science), 1995(5):824-828.)
[62] 杨和福, AndrewRMctaggrt,HarryBurton. 南极夏季沿海海藻phaeocystis pouchetii繁殖与海水中溶解游离型氨基酸含量的关系. 南极研究, 1990, 2(04): 45-49.(Yang HF, Mctaggrt A R, Burton H, Relation Between Concentration of DisolvedFree Amino Acids and Bloom of Phaeocystis Pouchetii During Summer Antractic Coast Water, 1990, 2(04):45-49.)
[63]FlorencioF J ,Vega J M. Utilization of nitrate, nitrite and ammonium by chlamydomonas-reinhardii - photoproduction of ammonium. Planta, 1983, 158(4): 288-293.
[64] Garbayo I, Leon R, Vigara J, et al. Inhibition of nitrate consumption by nitrite in entrapped chlamydomonas reinhardtii cells. Bioresource Technology, 2002, 81(3): 207-215.
[65] Lomas M W ,Glibert P M. Interactions between nh4+ and no3- uptake and assimilation: Comparison of diatoms and dinoflagellates at several growth temperatures. Marine Biology, 1999, 133(3): 541-551.
[66]杨柳, 章铭,刘正文. 太湖春季浮游植物群落对不同形态氮的吸收. 湖泊科学, 2011, 23(04): 605-611.(Yang L, Zhang M, Liu Z W, Uptake of various forms of nitrogen by phytoplankton community in spring in Lake Taihu. Journal of Lake Sciences, 2011, 23(4):605-611.)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邱 浩,王欣然*. 二硫化钼的电子输运与器件[J]. 南京大学学报(自然科学版), 2014, 50(3): 280 .
[2] 王学锋1,2*,徐永兵1,2*,张 荣1,2. 低维磁性耦合体系的新物性及电/光场调控进展[J]. 南京大学学报(自然科学版), 2014, 50(3): 309 .
[3] 骆乾坤*,吴剑锋2,杨运3,钱家忠1. 渗透系数空间变异程度对进化算法优化结果影响评价[J]. 南京大学学报(自然科学版), 2015, 51(1): 60 -66 .
[4] 孙大军1,2, 王永恒1,2*, 勇俊1,2. 实频数据技术在水声换能器宽带匹配中的应用[J]. 南京大学学报(自然科学版), 2015, 51(6): 1182 -1188 .
[5] 杨政予1,王新龙1
. 茅山军号声现象的进一步研究[J]. 南京大学学报(自然科学版), 2015, 51(6): 1097 -1106 .
[6] 李荣富1,2,罗跃辉 ,2,曾洪玉1,2,阮晓红1,2*,刘丛强3*. 稳定同位素技术在环境水体氮的生物地球化学循环研究中的应用[J]. 南京大学学报(自然科学版), 2016, 52(1): 16 -26 .
[7] 李 婷1,张超智1,2*,沈 丹1,袁 阳1. 石墨烯和氧化石墨烯的生物体毒性研究进展[J]. 南京大学学报(自然科学版), 2016, 52(2): 235 .
[8] 涂 臻*,卢 晶 . 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究[J]. 南京大学学报(自然科学版), 2016, 52(2): 382 .
[9] 葛 勇1,孙宏祥1,2*,袁寿其1,夏建平1,管义钧1 . 含对称三角形腔的波导管中宽带低频隔声效应[J]. 南京大学学报(自然科学版), 2016, 52(4): 619 .
[10] 季 阳,单 丹,钱明庆,李 伟,徐 骏*,陈坤基. 镶嵌于非晶碳化硅中的高导电性掺杂纳米晶硅的制备与电学性能研究[J]. 南京大学学报(自然科学版), 2016, 52(5): 780 .