南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (1): 46–55.

• • 上一篇    下一篇

秸秆还田对土壤氨氮热力学吸附性质的影响研究

王朝炜1,2,朱愿福1,2,李荣富1,2,阮晓红1,2,,刘丛强3*   

  • 出版日期:2016-01-27 发布日期:2016-01-27
  • 作者简介:(1. 南京大学 表生地球化学教育部重点实验室,南京,210046;2. 南京大学 地球科学与工程学院水科学系,南京,210046;3. 中国科学院地球化学研究所,环境地球化学国家重点实验室,贵阳,550002)
  • 基金资助:
    基金项目:国家自然科学基金重点项目(41230640),国家水体污染控制与治理科技重大专项(2012ZX07204-003)
    收稿日期:2015-12-05
    *通讯联系人,E-mail:liucongqiang@vip.skleg.cn,ruanxh@nju.edu.cn

Impact of straw-returning to characteristic of ammonia nitrogen thermodynamic adsorption in soils

Wang Chaowei1,2, Zhu Yuanfu1,2, Li Rongfu1,2, Ruan Xiaohong1,2*, Liu Congqiang3*   

  • Online:2016-01-27 Published:2016-01-27
  • About author:(1. Department of Water Science, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210046, China; 2. MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210046, China; 3. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China)

摘要: 通过对比未添加秸秆和添加秸秆情景下潮土和砂姜黑土对氨氮的等温吸附实验,探讨秸秆还田对土壤氨氮热力学吸附性质的影响,为氮素在土壤垂向迁移转化过程中发生的吸附反应提供科学参考。研究表明:①砂姜黑土对氨氮的吸附能力要强于潮土,吸附能力主要与土壤的黏粒含量有关。②在实验设定的浓度范围内,未添加秸秆和添加秸秆的所有样品的吸附等温线均能用Henry吸附等温模型和Freundlich吸附等温模型拟合。同时,Langmuir 吸附等温模型可以更好地拟合未添加秸秆以及少量添加秸秆的样品。③添加秸秆的混合样品相对于土壤样品降低了对氨氮的吸附效率和吸附容量。未添加秸秆的土样对氨氮的吸附效率KH的平均值为41.88 L·kg-1,饱和吸附量qm的平均值为823.85mg·kg-1;少量添加秸秆的混合样对氨氮吸附效率KH的平均值为21.29 L·kg-1,饱和吸附量qm平均值为732.06 mg·kg-1;大量添加秸秆的混合样对氨氮的吸附效率平均值为13.99 L·kg-1。

Abstract: In this paper we investigated the impact of straw returning to the ammonia nitrogen thermodynamic adsorption properties of soils, in order to offer reference for study on transport and transformation of nitrogen in soil . We have conducted ammonia nitrogen isothermal adsorption experiments in alluvial soil and black clay soil, with and without straw. The results are as follows: 1) The ammonia nitrogen adsorptive ability of the black clay soil is higher than that of the alluvial soil, which is primarily related to the clay content in the soil. 2) Within the concentration range of our experiments, with or without the straw addition, the adsorption isotherms of all samples fit Henry and Freundlich adsorption isotherm models. Meanwhile, Langmuir adsorption isotherm model also fits the experimental isotherms well when a small amount of or no straw is added. 3) Straw-mixing soil has lower efficiencies and capacities of ammonia nitrogen adsorption in the experiments. When no straw is added, the average adsorption efficiency (KH) is 41.88 L·mg-1; the average maximum adsorption capacity (qm) is 823.85 mg·kg-1. When a little straw is added, the average adsorption efficiency (KH) is 21.29 L·mg-1; the average maximum adsorption capacity (qm) is 732.06 mg·kg-1. When a lot of straw is added, the average adsorption efficiency (KH) of is 13.99 L·mg-1.

[1] 韩鲁佳, 闫巧娟, 刘向阳等. 中国农作物秸秆资源及其利用现状. 农业工程学报, 2002, 03: 87-91.
[2] 谢光辉, 王晓玉, 任兰天. 中国作物秸秆资源评估研究现状. 生物工程学报, 2010, 07: 855-863.
[3] 毕于运, 高春雨, 王亚静等. 中国秸秆资源数量估算. 农业工程学报, 2009, 12: 211-217.
[4] 高利伟, 马林, 张卫峰等. 中国作物秸秆养分资源数量估算及其利用状况. 农业工程学报, 2009, 07: 173-179.
[5] 陈金, 唐玉海, 尹燕枰等. 秸秆还田条件下适量施氮对冬小麦氮素利用及产量的影响. 作物学报 41.1, 2015: 160-167.
[6] 强学彩. 秸秆还田量的农田生态效应研究. 中国农业大学, 2003.
[7] 赵鹏, 陈阜, 马新明等. 麦玉两熟秸秆还田对作物产量和农田氮素平衡的影响. 干旱地区农业研究, 2010 (2): 162-166.
[8] 马力, 杨林章, 肖和艾等. 长期施肥和秸秆还田对红壤水稻土氮素分布和矿化特性的影响. 植物营养与肥料学报, 2011, 17(4): 898-905.
[9] Watanabe T, Man L H, Vien D M, et al. Effects of continuous rice straw compost application on rice yield and soil properties in the Mekong Delta. Soil science and plant nutrition, 2009, 55(6): 754-763.
[10] 蔡太义, 黄耀威, 黄会娟等. 不同年限免耕秸秆覆盖对土壤活性有机碳和碳库管理指数的影响. 生态学杂志, 2011, 30(9): 1962-1968.
[11] 陈伏生, 曾德慧, 范志平等. 森林土壤氮素有效性的野外估测方法. 林业科学, 2007, 43(A01): 83-88.
[12] Aoyama M, Nozawa T. Microbial biomass nitrogen and mineralization-immobilization processes of nitrogen in soils incubated with various organic materials. Soil Science and Plant Nutrition, 1993, 39(1): 23-32.
[13] 陈尚洪, 朱钟麟, 刘定辉等. 秸秆还田和免耕对土壤养分及碳库管理指数的影响研究. 植物营养与肥料学报, 2008, 14(4): 806-809.
[14] 张鹏, 李涵, 贾志宽等. 秸秆还田对宁南旱区土壤有机碳含量及土壤碳矿化的影响. 农业环境科学学报, 2011, 30(12): 2518-2525.
[15] 胡希远, Kuehne R F. 秸秆在土壤内分解初期氮素矿化与固持的模拟测定. 应用生态学报, 2005, 16(2): 243-248.
[16] 申源源, 陈宏. 秸秆还田对土壤改良的研究进展. 中国农学通报, 2009, 25(19): 291–294
[17] 李新举, 张志国, 李贻学. 土壤深度对还田秸秆腐解速度的影响. 土壤学报, 2001, 38(1): 135–138
[18] LIAO Y, ZHENG S, Jun N I E, et al. Long-term effect of fertilizer and rice straw on mineral composition and potassium adsorption in a reddish paddy soil. Journal of Integrative Agriculture, 2013, 12(4): 694-710.
[19] 王改玲, 郝明德, 陈德立. 秸秆还田对灌溉玉米田土壤反硝化及 N2O 排放的影响. 2006.
[20] 王忠华. 转 Bt 基因水稻对土壤微生态系统的潜在影响. 应用生态学报, 2005, 12.
[21] 宋贺, 王成雨, 陈清等. 长期秸秆还田对设施菜田土壤反硝化特征和 N2O 排放的影响. 中国农业气象, 2014, 35(6): 628-634.
[22] Nommik H, Vahtras K. Retention and fixation of ammonium and ammonia in soils//Nitrogen in agricultural soils. American Society of Agronomy Madison, 1982, 22: 123-171.
[23] 刘春晓, 曹杨, 王晓杰等. 小麦秸秆对尿素中养分的吸附研究. 江西农业学报, 2010, 22(7): 125-127.
[24] Thomsen I K. Turnover of 15N-straw and NH4 NO 3 in a sandy loam soil: Effects of straw disposal and N fertilization. Soil Biology and Biochemistry, 1993, 25(11): 1561-1566.
[25] 陈根山, 李双双, 谭珊珊. 宿州市蛹桥区秸秆还田对夏玉米生长的影响. 现代农业科技, 2015 (8): 69-69.
[26] 魏复盛, 寇洪茹, 洪水皆等. 水和废水监测分析方法. 北京:中国环境科学出版社, 2002: 276-280.
[27] 鲁如坤. 土壤农业化学分析方法. 北京:中国农业科技出版社, 2000: 22-108.
[28] 程鹏, 高抒, 李徐生. 激光粒度仪测试结果及其与沉降法, 筛析法的比较①. 沉积学报, 2001, 19(3).
[29] 林玉锁, 薛家骅. 由 Freundlich 方程探讨锌在石灰性土壤中的吸附机制和迁移规律. 土壤学报, 1991, 28(4): 390-395.
[30] Weber T W, Chakkravorti R K. Pore and solid diffusion models for fixed-bed adsorbers. AIChE Journal, 1974, 20(2):228-238.
[31] Rosenfeld J K. Ammonium adsorption in nearshore anoxic sediments1. Limnology and Oceanography, 1979, 24(2): 356-364.
[32] 谢鹏, 蒋剑敏, 熊毅. 我国几种主要土壤胶体的 NH4+吸附特征. 土壤, 1986, 4: 011.
[33] 于淑芳, 吴文良. 山东省主要土壤对不同形态氮素吸持能力的研究. 山东农业科学, 1998 (5): 10-14.
[34] 王而力, 王雅迪, 王嗣淇. 西辽河不同粒级沉积物的氨氮吸附-解吸特征. 环境科学研究, 2012, 25(9): 1016-1022.
[35] 姜桂华. 铵态氮在土壤中吸附性能探讨. 长安大学学报: 建筑与环境科学版, 2004, 21(2): 32-34.
[36] Langmuir. The constitution and fundamental properties of solids and liquids. Journal of American Chemical Society, 1916, 38: 2221-2295.
[37] Langmuir. Theadsorption of gases on plane surfaees, mica and platinum. Journal of the American Chemical Society, 1918, 40(9): 1361-1403.
[38] Freundlich H M F. Over the adsorption in solution. J. Phys. Chem, 1906, 57(385): e470.
[39] 翟丽华, 刘鸿亮, 徐红灯等. 浙江某农场土壤和沟渠沉积物对氨氮的吸附研究. 环境科学, 2007, 28(8): 1770-1773.
[40] Myers D. Surfaces, interfaces and colloids. New York:Wiley-Vch, 1990.
[41] 赵丹, 苏永渤. 改性斜发沸石吸附水中氨氮的研究. 环境化学, 2003, 22(1): 59-63.
[42] RosenJeld J K. Ammonium adsorp-tion in nearshore anoxic sediments. Ltmnol Oceanogr, 1979, 24(2): 356-364.
[43] Rysgaard S, Thastum P, Dalsgaard T, et al. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries and Coasts, 1999, 22(1): 21-30.



 

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!