南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (1): 27–35.

• • 上一篇    下一篇

上覆水不同C/N比条件下沉积物环境反硝化及氨氧化功能基因丰度变化特征

李筱宛1,2,张亚平1,2,万宇1,2,阮晓红1,2*   

  • 出版日期:2016-01-27 发布日期:2016-01-27
  • 作者简介:(1. 南京大学表生地球化学教育部重点实验室,南京,210046; 2. 南京大学地球科学与工程学院,南京,210046)
  • 基金资助:
    基金项目:国家自然科学基金重点基金(41230640),国家水体污染控制与治理科技重大专项(2012ZX07204-003)
    收稿日期:2015-12-10
    *通讯联系人,E-mail:ruanxh@nju.edu.cn

Abundance variations of denitrification and ammonium oxidation functional genes in sediment under different C/N ratio conditions

Li Xiaowan1,2, Zhang Yaping1,2, Wan Yu1,2, Luo Yuehui1,2, Ruan Xiaohong1,2*   

  • Online:2016-01-27 Published:2016-01-27
  • About author:(1. Key Laboratory of Surficial Geochemistry, Ministry of Education, Nanjing, 210046, China; 2. School of Earth Sciences and Engineering, Nanjing, 210046, China)

摘要: 本研究以太湖梅梁湾沉积物环境为研究对象,通过室内培养试验,研究上覆水不同C/N比条件对沉积物中反硝化(nirS、nirK)及氨氧化功能基因(古菌AOA-amoA、细菌AOB-amoA)丰度的影响,实验设计硝氮水平为2.0和5.0 mg·L-1,C/N为0.5、2、4、6、10、14。结果表明,沉积物样品nirK和nirS功能基因本底丰度分别为1.54×106 copies·g-1和2.21×106 copies·g-1,氨氧化细菌和古菌功能基因本底丰度分别为1.89×103 copies·g-1和2.03×105 copies·g-1。氨氧化功能基因丰度对C/N比一定比值时,其丰度由初期的AOA-amoA)丰度对C/N比变化响应更显著。硝酸盐氮浓度2=0.551,P<0.05),当氨氧化功能基因丰度较高时,来源于沉积物中氨氮的硝化产物使得系统中硝酸盐趋于累积。

Abstract: This study investigated the relationships between C/N ratios in overlying water and abundances of denitrification and ammonium oxidation functional genes (nirK, nirS, AOA-amoA and AOB-amoA) in sediments sampled from Meiliang Bay, Taihu Lake. The experiment was conducted under two nitrate substrate concentrations of 2.0 and 5.0 mg·L-1; and the C/N ratios was selected to be 0.5、2、4、6、10、14. The results showed that, the background abundances of nirK and nirS were 1.54×106 copies·g-1 and 2.21×106 copies·g-1, respectively, those of AOB-amoA and AOA-amoA were 1.89×103 copies·g-1 and 2.03×105 copies·g-1, respectively. During 60-day incubation, the abundances of denitrification functional genes in all samples have increased, but showed no significant response to changes in C/N ratios, while the abundance of ammonium oxidation functional genes varied with the changing C/N ratios. When C/N ratio exceed a certain value, the abundance of ammonium oxidation functional genes tended to decrease after an early increase, and AOA-amoA abundance responded to the different C/N ratios more evidently. Correlation analysis indicated that the transformation rates of nitrate significantly correlated to the abundance of ammonium oxidation genes (r2=0.551, p<0.05). When the abundance of ammonium oxidation genes was at high level, nitrate tended to accumulate in the system, which might result from the nitrification of ammonia nitrogen in sediment.

[1] 曾巾,杨柳燕,肖琳,等. 湖泊氮素生物地球化学循环及微生物的作用[J]. 湖泊科学. 2007, 19(4): 382-389.(Zeng J, Yang L Y, Xiao L, et al. Biogeochemical cycling of nitrogen in lakes and the role of microorganisms in conversion of nitrogen compounds[J]. Journal of Lake Sciences. 2007, 19(4): 382-389.)
[2] . 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报. 2013(01): 98-108.(He J Z, Zhang L M. Key processes and microbial mechanisms of soil nitrogen transformation[J]. Microbiology China. 2013(01): 98-108.)
[3] Zhi W, Ji G. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J]. Water Research. 2014, 64: 32-41.
[4] Huang B, Feng H, Wang M, et al. The effect of C/N ratio on nitrogen removal in a bioelectrochemical system[J]. Bioresource Technology. 2013, 132: 91-98.
[5] Cervantes F J, De la Rosa D A, Gomez J. Nitrogen removal from wastewaters at low C/N ratios with ammonium and acetate as electron donors[J]. Bioresour Technol. 2001, 79(2): 165-170.
[6] Peng Y Z, Ma Y, Wang S Y. Denitrification potential enhancement by addition of external carbon sources in a pre-denitrification process[J]. J Environ Sci (China). 2007, 19(3): 284-289.
[7] Tugtas A E, Pavlostathis S G. Electron donor effect on nitrate reduction pathway and kinetics in a mixed methanogenic culture[J]. Biotechnology and bioengineering. 2007, 98(4): 756-763.
[8] Kraft B, Tegetmeyer H E, Sharma R, et al. The environmental controls that govern the end product of bacterial nitrate respiration[J]. Science. 2014, 345(6197): 676-679.
[9] Ward B B. How nitrogen is lost[J]. Science. 2013, 341(6144): 352-353.
[10] Babbin A R, Keil R G, Devol A H, et al. Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean[J]. Science. 2014, 344(6182): 406-408.
[11] 张波,杜应旸,陈宇炜,等. 太湖流域典型河流沉积物的反硝化作用[J]. 环境科学学报. 2012, 32(08): 1866-1873.(Zhang B, Du Y Y, Chen Y W, et al. Denitrification in sediments of typical rivers in Taihu Basin[J]. Acta Scientiae Circumstantiae. 2012, 32(08): 1866-1873.)
[12] Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. [J]. Applied and Environmental Microbiology. 1997, 63: 4704-4712.
[13] Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102: 14683-14688.
[14] Zhang X, Agogue H, Dupuy C, et al. Relative Abundance of Ammonia Oxidizers, Denitrifiers, and Anammox Bacteria in Sediments of Hyper-Nutrified Estuarine Tidal Flats and in Relation to Environmental Conditions[J]. Clean-Soil Air Water. 2014, 42(6): 815-823.
[15] Braker G, Fesefeldt A, Witzel K. Development of PCR Primer Systems for Amplification of Nitrite Reductase Genes (nirK and nirS) To Detect Denitrifying Bacteria in Environmental Samples[J]. Applied and Environmental Microbiology. 1998, 64: 3769-3775.
[16] 水和废水监测分析方法第四版[M]. 中国环境科学出版社, 2002.(Determination methods for examination of water and wastewater[M]. China Environmental Science Press, 2002.)
[17] Yang X, Wang S, Zhou L. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6[J]. Bioresource Technology. 2012, 104: 65-72.
[18] Vesilind P. Wastewater treatment plant design[G]. Water Environment Federation, IWA, 2003.
[19] Schmidt T M, Schaechter M. Topics in ecological and environmental microbiology[M]. Science Publishing, 2012: 483-501.
[20] Dionisi H M, Layton A C, Harms G, et al. Quantification of Nitrosomonas oligotropha-Like Ammonia-Oxidizing Bacteria and Nitrospira spp. from Full-Scale Wastewater Treatment Plants by Competitive PCR[J]. Appl.environ.microbiol. 2002, 68(1): 245-253.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!