南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (1): 125–132.

• • 上一篇    下一篇

波浪作用下太湖梅梁湾口近底部湍流特征

邵宇阳1* ,朱正雷1,张健玮1,沈骁腾2   

  • 出版日期:2016-01-27 发布日期:2016-01-27
  • 作者简介:(1. 河海大学港口海岸与近海工程学院,南京,210098;2. 美国弗吉尼亚海洋研究所,23062)
  • 基金资助:
    基金项目:国家自然科学基金重点项目(41230640),国家自然基金青年项目(51409081)
    收稿日期:2015-10-07
    *通讯联系人,E-mail:syy@hhu.edu.cn

Wave induced turbulence characteristics at Meiliang Bay,TaihuLake

ShaoYuyang1* ,ZhuZhenglei1,ZhangJianwei1,ShenXiaoteng2   

  • Online:2016-01-27 Published:2016-01-27
  • About author:(1.HohaiUniversity,Nanjing,210098,China;2.VirlginiaInsistuteofMarineScience,23062,USA)

摘要: 为了更好地了解太湖的湍流特性及其对底泥再悬浮和絮凝扩散的影响,2015年8月13日14:00时在太湖梅梁湾口定点对水流和波浪连续观测了24个小时,波潮仪和浊度仪被用于观测波浪要素和悬浮物浓度,另有两台声学多普勒流速仪(ADV)用于观测距离湖底10cm和30cm处的湍流特征。整个测量期间主要经历了三种不同的波浪情况,通过对ADV的观测结果进行分析处理,计算出不同波浪分级下的雷诺应力,湍流动能和湍流动能耗散率等湍流特征参量。观测结果表明在整个测量期间底部的剪切应力和湍流动能与波高要素有着良好的线性关系;同时结合室内底泥侵蚀试验结果表明在本文研究时段内,直接利用波要素推导切应力比利用ADV推导出的雷诺应力更加符合太湖梅梁湾口底部剪切应力的实际情况。本文的结果可为进一步研究与湍流密切相关的太湖污染物扩散和生物过程提供基础。

Abstract: The objective of this study is to better understand the turbulence characteristics and their influence on sediment resuspension, flocculation, and diffusion in Taihu Lake. The currents and waves in the mouth of Meiliang Bay, Taihu (latitude 22 ° 31 ’56.39"and longitude 120 ° 9 ’38.34 ") are continuously observed for 24 hours (from August 13, 14:00 ). A tide gauge and an optical backscatter sensor were used to observe wave parameters and suspended matter concentration respectively. Two Sontek Acoustic Doppler Velocimetrys (ADV) were used to observe the characteristics of near-bottom turbulence at 10 cm and 30 cm above bed, respectively. Three different wave conditions happened during the observation period. Based on the results from ADVs, the Reynolds stress, turbulence kinetic energy, and turbulent energy dissipation rate under different waves were studied. The results demonstrate a good linear relationship among the bottom shear stress, turbulent kinetic energy, and the wave height. Combined with the results of laboratory tests, it also shows in this specific time and location, the shear stress derived from the wave heights is better than Reynolds stress estimated from ADVs. This study provides data for further studying contamination and biological transport processes in Taihu Lake.

[1] Wu T, Qin B, Zhu G, et al. Modeling of turbidity dynamics caused by wind-induced waves and current in the Taihu Lake. International Journal of Sediment Research, 2013, 28(2): 139-148.
[2] Zhu G, Qin B, Gao G. Direct evidence of phosphorus outbreak release from sediment to overlying water in a large shallow lake caused by strong wind wave disturbance[J]. Chinese Science Bulletin, 2005, 50(6): 577-582.
[3] 胡开明, 王水, 逄勇. 太湖不同湖区底泥悬浮沉降规律研究及内源释放量估算. 湖泊科学, 2014, 26(2): 191-199.
[4] 李一平, 逄勇, 李勇. 水动力作用下太湖底泥的再悬浮通量. 水利学报, 2007, 38(5):558-564.
[5] Ahlgren J, Reitzel K, De Barbanere, et al. Release of organic P forms from lake sediments. Water Research, 2011, 45(2):565-572.
[6] Zheng S, Wang P, Chao W, et al. Sediment resuspension under action of wind in Taihu Lake, China. International Journal of Sediment Research, 2015, 30(1): 48-62.
[7] Winterwerp J C, Manning A J, Martens C, et al. A heuristic formula for turbulence-induced flocculation of cohesive sediment. Estuarine, Coastal and Shelf Science, 2006, 68(1): 195-207.
[8] Shen X T, Maa J P Y. Modeling floc size distribution of suspended cohesive sediments using quadrature method of moments. Marine Geology, 2015, 359:106-119.
[9] Nikora V I, Goring D G. ADV measurements of turbulence: Can we improve their interpretation? Journal of Hydraulic Engineering, 1998, 124(6):630-634
[10]鲁远征, 吴加学, 刘欢. 河口底边界层湍流观测后处理技术方法分析. 海洋学报, 2012, 34(5):39-49.
[11]黄清辉, 王东红, 王春霞等. 太湖梅梁湾和五里湖沉积物磷形态的垂向变化. 中国环境科学, 2004, 24(2): 147-150.
[12] Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom. Journal of Geophysical Research, 1979, 84(C4):1797-1808.
[13] Swart D H. Offshore sediment transport and equilibrium beach profiles. TU Delft, Delft University of Technology, 1974.
[14] Nielsen P. Coastal bottom Boundary Layers and Sediment Transport. World Scientific Publishing, Singapore, Advanced Series on Ocean engineering, 1992.
[15] Hawley N. Sediment resuspension near the Keweenaw Peninsula, Lake Superior during the fall and winter 1990-1991. Journal of Great Lakes Research, 2000, 26(4):495-505.
[16] Heathershaw A D, Simpson J H. The sampling variability of the Reynolds stress and its relation to boundary shear stress and drag coefficient measurements. Estuarine, Coastal and Shelf Science, 1978, 6(3):263-274.
[17] Lumley J L, Terray E A. Kinematics of turbulence convected by a random wave field. Journal of Physical Oceanography, 1983, 13(11):2000-2007.
[18] Tennekes H, Lumley J L. A first course in turbulence. 1972.M.I.T. Press, 300pp.
[19]罗潋葱, 秦伯强, 胡维平等. 太湖波动特征分析. 水动力学研究与进展, 2004, 19(5) :664-670.
[20] Galperin B, Kantha L H, Hassid S, et al. A quasi-equilibrium turbulent energy model for geophysical flows. Journal of Atmosphere Science,1988, 45(1):55-62.
[21] Stapleton K R, Huntley D A, Seabed stress determination using the inertial dissipation method and the turbulent kinetic energy method. Earth Surface Processes and Landforms.1995, 20(9):807-815.
[22] Maa J P Y, Xu J P, Victor M. Notes on the performance of an optical backscatter sensor  for cohesive sediments, Marine Geology, 1992, 104(1):215-218.
[23] Ha H K, Hsu W Y, Maa J P Y, et al. Using ADV backscatter strength for measuring suspended cohesive sediment concentration. Continental Shelf Research, 2009, 29(10):1310-1316
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!