南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (1): 103–114.

• • 上一篇    下一篇

淮河流域浅层地下水氮污染阻断优先控制区识别

郑倩琳1,2,王妍妍1,2,闫雅妮1,2,廖 曼1,2,马 腾1,2*   

  • 出版日期:2016-01-27 发布日期:2016-01-27
  • 作者简介:(1.中国地质大学(武汉)生物地质与环境地质国家重点实验室,湖北,武汉,430074;2.中国地质大学(武汉)环境学院,湖北,武汉,430074)
  • 基金资助:
    基金项目:国家水体污染控制与治理科技重大专项(2012ZX07204-003-04)
    收稿日期:2015-11-22
    *通讯联系人,E-mail:mateng@cug.edu.cn

Identification of prior control areas for nitrogen pollution blocking in shallow groundwater in Huai River Basin

Zheng Qianlin1,2, Wang Yanyan1,2, Yan Yani1,2, Liao Man1,2, Ma Teng1,2*   

  • Online:2016-01-27 Published:2016-01-27
  • About author:(1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences(Wuhan), Wuhan, 430074,China; 2. School of Environmental Studies, China University of Geosciences(Wuhan), Wuhan, 430074,China)

摘要: 地下水向地表水排氮是地表水氮污染的主要来源之一.如何从水循环角度有效控制地下水中的氮向地表水排泄是地表水氮污染控制的关键问题,而如何从流域尺度识别出哪些是地下水向地表水排氮的高风险区域,则是阻控地下水向地表水排氮的难点.为此提出了地下水氮污染阻断优先控制区的定义和识别方法,以淮河流域为研究区,从地下水与地表水的相互作用关系、地下水氮污染程度和地下水遭受氮污染的风险三方面,按照优先治理地下水—地表水相互作用强、氮污染等级高、特殊脆弱性高的原则识别淮河流域浅层地下水氮污染阻断优先控制区.本研究为大流域尺度的地下水—地表水氮污染综合防控提供了新思路.

Abstract: Groundwater discharge is one of the primary sources of surface water nitrogen pollution. For the nitrogen pollution problem at the basin scale, the key problem to control nitrogen pollution is to control nitrogen pollutant in groundwater discharge to surface water, and the real difficulty to block nitrogen discharge is identification of the high risk areas where groundwater discharge nitrogen to surface water. In this study, we proposed the definition and identification methods of prior control areas for nitrogen pollution blocking in groundwater, and identified prior control areas of levels I, II and III in Huai River Basin(HRB) on the base of the interaction of groundwater and surface water, groundwater nitrogen pollution degree and groundwater nitrogen pollution risk. The fundamental principle is prior control over areas of high interactions between surface water and groundwater, high concentration of nitrogen pollutants and high risk of nitrogen pollution. This study provides a novel train of thought for comprehensive prevention and control of groundwater-surface water nitrogen pollution at basin scale.

[1] 刘琼. 抗生素废水中氮的转化特性研究[J]. 安徽农业科学. 2011(11): 6738-6740.
[2] 王飞. 潜流带氮素迁移转化过程的影响因素研究[D]. 吉林大学, 2013.
[3] 中华人民共和国环境保护部. 重点流域水污染防治规划(2011-2015)[Z]. 中华人民共和国环境保护部, 2011.
[4] 陈荦. 沙颍河流域地下水流与硝酸盐运移模拟及其对地表水污染的贡献研究[D]. 南京大学, 2013.
[5] 薛禹群,张幼宽. 地下水污染防治在我国水体污染控制与治理中的双重意义[J]. 环境科学学报. 2009(03): 474-481.
[6] Zhang Y, Schilling K E. Increasing streamflow and baseflow in Mississippi River since the 1940s: Effect of land use change[J]. Journal of Hydrology. 2006, 324(1): 412-422.
[7] Schilling K, Zhang Y. Baseflow contribution to nitrate-nitrogen export from a large, agricultural watershed, USA[J]. Journal of Hydrology. 2004, 295(1): 305-316.
[8] 汉典. 优先[Z]. http://www.zdic.net/c/8/f/23369.htm: 2015.
[9] 郑庆子,祝琳琳. 松花江吉林江段优先控制污染物筛选[J]. 环境科技. 2012(04): 68-70.
[10] Eriksson E, Christensen N, Schmidt J E, et al. Potential priority pollutants in sewage sludge[J]. Desalination. 2008, 226(1): 371-388.
[11] von der Ohe P C, Dulio V, Slobodnik J, et al. A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive[J]. Science of the Total Environment. 2011, 409(11): 2064-2077.
[12] 厉以强,周建中,刘洪,等. 遗传毒性试验在污染源优先控制中的筛选应用[J]. 中国环境监测. 1996, 3(12).
[13] 钟秀. 基于地下水饮用水源地保护的污染源优控等级评价[D]. 中国地质大学(武汉), 2013.
[14] Hansen B G, Van Haelst A G, Van Leeuwen K, et al. Priority setting for existing chemicals: European Union risk ranking method[J]. Environmental Toxicology and Chemistry. 1999, 18(4): 772-779.
[15] 苏玉,蔡佳亮,汪杰,等. 中国农业污染优先控制区的划分方法初探[J]. 环境污染与防治. 2009(10): 87-90.
[16] 吴珺. 农业污染优先控制区划分[D]. 安徽农业大学, 2013.
[17] 王伟,冯海波,臧志雪,等. 河北省海河流域污染防治优先控制单元研究[J]. 南水北调与水利科技. 2011(05): 59-62.
[18] 陈新明,马腾,蔡鹤生,等. 地下水氮污染的区域性调控策略[J]. 地质科技情报. 2013(06): 130-143.
[19] Pionke H B, Gburek W J, Sharpley A N. Critical source area controls on water quality in an agricultural watershed located in the Chesapeake Basin[J]. ECOLOGICAL ENGINEERING. 2000, 14(4): 325-335.
[20] Orlikowski D, Bugey A, Périllon C, et al. Development of a GIS method to localize critical source areas of diffuse nitrate pollution[J]. Water Science & Technology. 2011, 64(4): 892.
[21] Sophocleous M. Interactions between groundwater and surface water: the state of the science[J]. Hydrogeology journal. 2002, 10(1): 52-67.
[22] 罗泽娇,靳孟贵. 地下水三氮污染的研究进展[J]. 水文地质工程地质. 2002(04): 65-69.
[23] CN-GB. 中华人民共和国地下水质量标准[S]. 1993.
[24] 王焰新. 地下水污染与防治[M]. 高等教育出版社, 2007.
[25] 闫雅妮,王妍妍,郑倩琳,等. 地下水硝酸盐特殊脆弱性评价: 以沙颍河流域为例[J]. 环境科学与技术. 2015, 8: 44.
[26] 陈攀,李兰,周文财. 水资源脆弱性及评价方法国内外研究进展[J]. 水资源保护. 2011, 27(5): 32-38.
[27] 中国地质调查局. 地下水脆弱性评价技术要求 [Z]. 中国地质调查局, 2006.
[28] 中华人民共和国环境保护部. 淮河流域水污染防治”十二五“规划编制大纲[Z]. 中华人民共和国环境保护部, 2010.
[29] 唐克旺,吴玉成,侯杰. 中国地下水资源质量评价(Ⅱ)——地下水水质现状和污染分析[J]. 水资源保护. 2006(03): 1-4.
[30] 刘红樱叶念军. 淮河流域环境地质综合研究报告[R]. 南京: 南京地质矿产研究所, 2009.
[31] 单楠,徐静,马天海,等. 淮河流域地下水资源保护专项规划[Z]. 南京大学, 2014.
[32] 中国科技资源共享网. http://www.escience.gov.cn/: 2015.
[33] 地球系统科学数据共享平台. http://www.geodata.cn/Portal/: 2015.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!